期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Advances on Na-K liquid alloy-based batteries
1
作者 Junwei Wu Zhuang Xue +4 位作者 lixuan yuan Jilei Ye Qinghong Huang Lijun Fu Yuping Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期313-323,I0009,共12页
Sodium-potassium(Na^(-)K)liquid alloys attract increasing research attention,as an ideal alternative of Li metal for metal-based batteries,attributing to their high abundance,low redox potential,high capacity,and dend... Sodium-potassium(Na^(-)K)liquid alloys attract increasing research attention,as an ideal alternative of Li metal for metal-based batteries,attributing to their high abundance,low redox potential,high capacity,and dendrite-free properties.In addition,the liquid and self-healing features of Na^(-)K alloys endow good electrode/electrolyte interfacial contact.The recent advances on the Na^(-)K liquid alloy-based batteries(NKBs)are reviewed herein.The anode designs for immobilization of the liquid alloy are introduced.The influences of the electrolyte and cathode materials on the battery performances are discussed.In addition,considering the co-existence of both K^(+)and Na^(+)in the electrolyte,the working mechanisms of the NKBs are elaborated.We also show that despite the improvement,challenges of the NKBs remain.The compatibility between Na^(-)K liquid alloy and electrolyte,as well as disputed working mechanisms,request detailed surface analyses of the liquid alloy and local element distribution evolution in the battery.This review would shed light on the fundamental understanding of Na^(-)K alloy electrochemistry and the development of dendrite-free metal-based energy storage systems with high energy density. 展开更多
关键词 Sodium-potassium alloy Liquid anode Metal battery Dendrite-free Mechanism
下载PDF
Recent advances in modification strategies of silicon-based lithiumion batteries 被引量:1
2
作者 Wenlei Wang Yu Wang +6 位作者 lixuan yuan Chaolin You Junwei Wu Lili Liu Jilei Ye Yunling Wu Lijun Fu 《Nano Research》 SCIE EI CSCD 2023年第3期3781-3803,共23页
As potential alternatives to graphite,silicon(Si)and silicon oxides(SiO_(x))received a lot of attention as anode materials for lithiumion batteries owing to their relatively low working potentials,high theoretical spe... As potential alternatives to graphite,silicon(Si)and silicon oxides(SiO_(x))received a lot of attention as anode materials for lithiumion batteries owing to their relatively low working potentials,high theoretical specific capacities,and abundant resources.However,the commercialization of Si-based anodes is greatly hindered by their massive volume expansion,low conductivity,unstable solid electrolyte interface(SEI),and low initial Coulombic efficiency(ICE).Continuous endeavors have been devoted to overcoming these challenges to achieve practical usage.This review is centered on the major challenges and latest developments in the modification strategies of Si-based anodes,including structure optimization,surface/interface regulation,novel binders,and innovative design of electrolyte.Finally,outlooks and perspectives of Si-based anodes for future development are presented. 展开更多
关键词 lithium-ion batteries SILICON silicon oxides modification strategies
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部