Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineere...Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineered electrocatalyst plays a vital role in the realization of superior catalytic performance.Among various types of promising nanomaterials,metal–organic frameworks(MOFs)are competitive candidates for developing efficient electrocatalytic NH_(3) synthesis from simple nitrogen-containing molecules or ions,such as N_(2) and NO_(3)^(−).In this review,recent advances in the development of electrocatalysts derived from MOFs for the electrosynthesis of NH_(3) are collected,categorized,and discussed,including their application in the N_(2) reduction reaction(NRR)and the NO_(3)^(−)reduction reaction(NO3RR).Firstly,the fundamental principles are illustrated,such as plausible mechanisms of NH_(3) generation from N_(2) and NO_(3)^(−),the apparatus of corresponding electrocatalysis,parameters for evaluation of reaction efficiency,and detection methods of yielding NH_(3).Then,the electrocatalysts for NRR processes are discussed in detail,including pristine MOFs,MOF-hybrids,MOF-derived N-doped porous carbons,single atomic catalysts from pyrolysis of MOFs,and other MOF-related materials.Subsequently,MOF-related NO3RR processes are also listed and discussed.Finally,the existing challenges and prospects for the rational design and fabrication of electrocatalysts from MOFs for electrochemical NH_(3) synthesis are presented,such as the evolution of investigation methods with artificial intelligence,innovation in synthetic methods of MOF-related catalysts,advancement of characterization techniques,and extended electrocatalytic reactions.展开更多
Solid-state polymer electrolytes are an important factor in the deployment of highsafety and high-energy-density solid-state lithium metal batteries.Nevertheless,use of the traditional polyethylene oxide-based solid-s...Solid-state polymer electrolytes are an important factor in the deployment of highsafety and high-energy-density solid-state lithium metal batteries.Nevertheless,use of the traditional polyethylene oxide-based solid-state polymer electrolyte is limited due to its inherently low ionic conductivity and narrow electrochemical stability window.Herein,for the first time,we specifically designed a cyanoethyl cellulosein-deep eutectic solvent composite eutectogel as a promising candidate for hybrid solid-state polymer electrolytes.It is found that the proposed eutectogel electrolyte achieves high ionic conductivity(1.87×10^(−3) S cm^(−1) at 25℃),superior electrochemical stability(up to 4.8 V),and outstanding lithium plating/striping behavior(low overpotential of 0.04 V at 1mAcm^(−2) and 1mAh cm^(−2) over 300 h).With the eutectogel-based solid-state polymer electrolyte,a 4.45 V LiCoO_(2)/Li metal battery delivers prominent long-term lifespan(capacity retention of 85%after 200 cycles)and high average Coulombic efficiency(99.5%)under ambient conditions,significantly outperforming the traditional carbonate-based liquid electrolyte.Our work demonstrates a promising strategy for designing eutectogel-based solid-state polymer electrolytes to realize high-voltage and high-energy lithium metal batteries.展开更多
Objective:Gal bladder carcinoma was one of the malignant tumors in the digestive system, characterized by high recurrence and invasion. Recent research indicates that chemotactic factors such as IL-8, MCP-1 and MIP-1...Objective:Gal bladder carcinoma was one of the malignant tumors in the digestive system, characterized by high recurrence and invasion. Recent research indicates that chemotactic factors such as IL-8, MCP-1 and MIP-1αhave played an important role in such aspects as formulation, growth, shifting of the tumor. The aim of this study was to investigate expressions of IL-8, MCP-1 and MIP-1αin gal bladder adenocarcinoma tissues. Methods:Gal bladder adenocarcinoma and noncancerous tissues were routinely formalin-fixed and paraf in-embedded, and in situ hybridization assay for IL-8, MCP-1 and MIP-1αmRNA. Results:(1) The positive rates or the scorings of IL-8, MCP-1 and MIP-1αmRNA were significantly higher in human gal bladder adenocarcinoma than those in human chronic cholecystitis (P〈0.01). The positive rates or the scorings of three factors were lower in wel-dif erentiatiated gal bladder adenocarcinoma than in poorly-dif erenfiatted ones, whereas there was only one significant dif erence between MCP-1 mRNA (P〈0.05). The closely positive correlation were found among IL-8, MCP-1 and MIP-1αmRNA. (2) Both the positive rates of IL-8 mRNA and MCP-1 mRNA as wel as their scorings were tightly related to their invasion of the common bile duct and the occurrence of lymph node transfer, moreover, the positive rates of MIP-1αmRNA and its scorings were tightly related to its invasion of liver. (3) Close positive correlation exists not only in IL-8 mRNA and MCP-1 mRNA (r=0.528), but also in MIP-1αmRNA and IL-8 mRNA (r=0.422), so does in MCP-1 mRNA and MIP-1αmRNA (r=0.638). Conclusion:The positive rates or the scorings of IL-8, MCP-1 and MIP-1αmRNA are significantly higher in human gal bladder adenocarcinoma than those in human chronic cholecystitis, and the closely positive correlation are found among them, which suggests that IL-8, MCP-1 and MIP-1αregulate and influence the development and transformation of the gal bladder adencarcinoma together.展开更多
Objective:To evaluate the impact of the diameter of SonoVue microbubbles on binding characteristics, including the adhesion rate and stability, of a new contrast agent targeted to choriocarcinoma cells(JARs) in vitro,...Objective:To evaluate the impact of the diameter of SonoVue microbubbles on binding characteristics, including the adhesion rate and stability, of a new contrast agent targeted to choriocarcinoma cells(JARs) in vitro, in order to establish a foundation to explore targeted ultrasound imaging for localization of tumor cell antigens and increase the early diagnostic rate for tumors.Methods:The objects were divided into three groups:the large microbubble group(n = 15), the middling microbubble group(n = 15) and the tiny microbubble group(n = 15).The rosette formation rate was counted.JARs were calculated by flow cytometry(FCM).The targeted contrast agent was prepared by mixing SonoVue microbubbles of different diam-eter with rabbit anti-human chorionic gonadotrophin(HCG) antibody.The binding rates of the targeted contrast agent to JARs before and after PBS rinse were analyzed.Results:The binding rate was significantly lower in the large microbubble group(61.7 ± 1.8)% than in the middling microbubble group(82.6 ± 4.5)% and the tiny microbubble group(91.3 ± 5.8)%(P < 0.05).The binding rates of different diameter microbubbles to JARs before and after PBS rinse were different.The middling microbubbles were the most stable ones, with the binding rate of(82.3 ± 4.5)% and(80.4 ± 3.9)% before and after PBS rinse(P > 0.05).The binding rates of the targeted microbubbles labeled with fluorescence to JARs were 68.6%, 81.3% and 89.3% in the large microbubble group, the middling microbubble group and the tiny microbubble group, respectively(P < 0.05).Conclu-sion:The binding capacity of the targeted SonoVue microbubbles to JARs is related to the diameter of the microbubble, which is determined by the shaking method before preparation.Modulating the diameter of SonoVue microbubbles may increase the binding rate and stability of targeted microbubbles to JARs, thus to improve the image of JARs.展开更多
基金support from the Natural Science Foundation of Liaoning Province(general program)(2020-MS-137)T.J.White would like to thank the MOE2019-T2-2-032 grant and Monetary Academic Resources for Research Grant 001561-00001 in Nanyang Technological University,Singapore+9 种基金T.Ma would like to thank the National Natural Science Foundation of China(Nos.52071171,52202248)Liaoning BaiQianWan Talents Program(LNBQW2018B0048)Shenyang Science and Technology Project(21-108-9-04)Australian Research Council(ARC)through Future Fellowship(FT210100298,FT210100806)Discovery Project(DP220100603)Linkage Project(LP210100467,LP210200504,LP210200345,LP220100088)Industrial Transformation Training Centre(IC180100005)schemesthe Australian Government through the Cooperative Research Centres Projects(CRCPXIII000077)F.Wei would like to thank the A^(*)STAR career development fund C210112054Singapore structural metal alloy program grant No.A18b1B0061.A.K.Cheetham would like to thank the Ras al Khaimah Centre for Advanced Materials.
文摘Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineered electrocatalyst plays a vital role in the realization of superior catalytic performance.Among various types of promising nanomaterials,metal–organic frameworks(MOFs)are competitive candidates for developing efficient electrocatalytic NH_(3) synthesis from simple nitrogen-containing molecules or ions,such as N_(2) and NO_(3)^(−).In this review,recent advances in the development of electrocatalysts derived from MOFs for the electrosynthesis of NH_(3) are collected,categorized,and discussed,including their application in the N_(2) reduction reaction(NRR)and the NO_(3)^(−)reduction reaction(NO3RR).Firstly,the fundamental principles are illustrated,such as plausible mechanisms of NH_(3) generation from N_(2) and NO_(3)^(−),the apparatus of corresponding electrocatalysis,parameters for evaluation of reaction efficiency,and detection methods of yielding NH_(3).Then,the electrocatalysts for NRR processes are discussed in detail,including pristine MOFs,MOF-hybrids,MOF-derived N-doped porous carbons,single atomic catalysts from pyrolysis of MOFs,and other MOF-related materials.Subsequently,MOF-related NO3RR processes are also listed and discussed.Finally,the existing challenges and prospects for the rational design and fabrication of electrocatalysts from MOFs for electrochemical NH_(3) synthesis are presented,such as the evolution of investigation methods with artificial intelligence,innovation in synthetic methods of MOF-related catalysts,advancement of characterization techniques,and extended electrocatalytic reactions.
基金supported by the National Natural Science Foundation of China(Grant Nos.52073298,U1706229,52072195)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21070304)the Youth Innovation Promotion Association of CAS(2020217).
文摘Solid-state polymer electrolytes are an important factor in the deployment of highsafety and high-energy-density solid-state lithium metal batteries.Nevertheless,use of the traditional polyethylene oxide-based solid-state polymer electrolyte is limited due to its inherently low ionic conductivity and narrow electrochemical stability window.Herein,for the first time,we specifically designed a cyanoethyl cellulosein-deep eutectic solvent composite eutectogel as a promising candidate for hybrid solid-state polymer electrolytes.It is found that the proposed eutectogel electrolyte achieves high ionic conductivity(1.87×10^(−3) S cm^(−1) at 25℃),superior electrochemical stability(up to 4.8 V),and outstanding lithium plating/striping behavior(low overpotential of 0.04 V at 1mAcm^(−2) and 1mAh cm^(−2) over 300 h).With the eutectogel-based solid-state polymer electrolyte,a 4.45 V LiCoO_(2)/Li metal battery delivers prominent long-term lifespan(capacity retention of 85%after 200 cycles)and high average Coulombic efficiency(99.5%)under ambient conditions,significantly outperforming the traditional carbonate-based liquid electrolyte.Our work demonstrates a promising strategy for designing eutectogel-based solid-state polymer electrolytes to realize high-voltage and high-energy lithium metal batteries.
文摘Objective:Gal bladder carcinoma was one of the malignant tumors in the digestive system, characterized by high recurrence and invasion. Recent research indicates that chemotactic factors such as IL-8, MCP-1 and MIP-1αhave played an important role in such aspects as formulation, growth, shifting of the tumor. The aim of this study was to investigate expressions of IL-8, MCP-1 and MIP-1αin gal bladder adenocarcinoma tissues. Methods:Gal bladder adenocarcinoma and noncancerous tissues were routinely formalin-fixed and paraf in-embedded, and in situ hybridization assay for IL-8, MCP-1 and MIP-1αmRNA. Results:(1) The positive rates or the scorings of IL-8, MCP-1 and MIP-1αmRNA were significantly higher in human gal bladder adenocarcinoma than those in human chronic cholecystitis (P〈0.01). The positive rates or the scorings of three factors were lower in wel-dif erentiatiated gal bladder adenocarcinoma than in poorly-dif erenfiatted ones, whereas there was only one significant dif erence between MCP-1 mRNA (P〈0.05). The closely positive correlation were found among IL-8, MCP-1 and MIP-1αmRNA. (2) Both the positive rates of IL-8 mRNA and MCP-1 mRNA as wel as their scorings were tightly related to their invasion of the common bile duct and the occurrence of lymph node transfer, moreover, the positive rates of MIP-1αmRNA and its scorings were tightly related to its invasion of liver. (3) Close positive correlation exists not only in IL-8 mRNA and MCP-1 mRNA (r=0.528), but also in MIP-1αmRNA and IL-8 mRNA (r=0.422), so does in MCP-1 mRNA and MIP-1αmRNA (r=0.638). Conclusion:The positive rates or the scorings of IL-8, MCP-1 and MIP-1αmRNA are significantly higher in human gal bladder adenocarcinoma than those in human chronic cholecystitis, and the closely positive correlation are found among them, which suggests that IL-8, MCP-1 and MIP-1αregulate and influence the development and transformation of the gal bladder adencarcinoma together.
基金Supported by a grant from Sci-Tech Program Foundation of GuangdongProvince (No. 2006B35901009).
文摘Objective:To evaluate the impact of the diameter of SonoVue microbubbles on binding characteristics, including the adhesion rate and stability, of a new contrast agent targeted to choriocarcinoma cells(JARs) in vitro, in order to establish a foundation to explore targeted ultrasound imaging for localization of tumor cell antigens and increase the early diagnostic rate for tumors.Methods:The objects were divided into three groups:the large microbubble group(n = 15), the middling microbubble group(n = 15) and the tiny microbubble group(n = 15).The rosette formation rate was counted.JARs were calculated by flow cytometry(FCM).The targeted contrast agent was prepared by mixing SonoVue microbubbles of different diam-eter with rabbit anti-human chorionic gonadotrophin(HCG) antibody.The binding rates of the targeted contrast agent to JARs before and after PBS rinse were analyzed.Results:The binding rate was significantly lower in the large microbubble group(61.7 ± 1.8)% than in the middling microbubble group(82.6 ± 4.5)% and the tiny microbubble group(91.3 ± 5.8)%(P < 0.05).The binding rates of different diameter microbubbles to JARs before and after PBS rinse were different.The middling microbubbles were the most stable ones, with the binding rate of(82.3 ± 4.5)% and(80.4 ± 3.9)% before and after PBS rinse(P > 0.05).The binding rates of the targeted microbubbles labeled with fluorescence to JARs were 68.6%, 81.3% and 89.3% in the large microbubble group, the middling microbubble group and the tiny microbubble group, respectively(P < 0.05).Conclu-sion:The binding capacity of the targeted SonoVue microbubbles to JARs is related to the diameter of the microbubble, which is determined by the shaking method before preparation.Modulating the diameter of SonoVue microbubbles may increase the binding rate and stability of targeted microbubbles to JARs, thus to improve the image of JARs.