期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Ballistic target recognition based on multiple data representations and deep-learning algorithms
1
作者 lixun han Cunqian FENG +2 位作者 Xiaowei HU Sisan HE Xuguang XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期167-181,共15页
Target recognition is a significant part of a Ballistic Missile Defense System(BMDS).However,most existing ballistic target recognition methods overlook the impact of data representation on recognition outcomes.This p... Target recognition is a significant part of a Ballistic Missile Defense System(BMDS).However,most existing ballistic target recognition methods overlook the impact of data representation on recognition outcomes.This paper focuses on systematically investigating the influences of three novel data representations in the Range-Doppler(RD)domain.Initially,the Radar Cross Section(RCS)and micro-Doppler(m-D)characteristics of a cone-shaped ballistic target are analyzed.Then,three different data representations are proposed:RD data,RD sequence tensor data,and RD trajectory data.To accommodate various data inputs,deep-learning models are designed,including a two-Dimensional Residual Dense Network(2D RDN),a three-Dimensional Residual Dense Network-Gated Recurrent Unit(3D RDN-GRU),and a Dynamic Trajectory Recognition Network(DTRN).Finally,an Electromagnetic(EM)computation dataset is collected to verify the performances of the networks.A broad range of experimental results demonstrates the effectiveness of the proposed framework.Moreover,several key parameters of the proposed networks and datasets are extensively studied in this research. 展开更多
关键词 Ballistic target MICRO-DOPPLER Deep learning RANGE-DOPPLER Radar target recognition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部