A straightforward coassembly strategy was developed for the preparation of polymeric nanoparticles driving by the intermolecular hydrogen bond between neutral poly(2-methyl-2-oxaozline)(PMeOx),tannic acid(TA) and doxo...A straightforward coassembly strategy was developed for the preparation of polymeric nanoparticles driving by the intermolecular hydrogen bond between neutral poly(2-methyl-2-oxaozline)(PMeOx),tannic acid(TA) and doxorubicin hydrochloride(Dox).The occurrence of the hydrogen-bonding amongst the different functionalities within the formed nanoparticles was verified by infrared(IR) spectroscopy.Scanning electron microscopy(SEM),dynamic light scattering(DLS),UV-vis absorption and photoluminescent measurements indicated the rapid formation of uniform and water dispersible/stable nanoparticles.The relative poor stability of PMeOx-TA-Dox in fetal bovine serum(FBS) solution enabled the rapid separation of Dox and PMeOx-TA,facilitating the release of Dox and its entrance into cellular nuclei as revealed by confocal laser scanning microscopy(CLSM).The presented strategy may provide an efficient alternative for the construction of multifunctional nanomedicines.展开更多
We have developed a facile strategy to fabricate model multicolor hydrogels via a straightforward mixing process of poly acrylonitrile-grafted methacrylamide(PANMAM),polymethacrylic acid(PMAA)and doped lanthanide(Eu/T...We have developed a facile strategy to fabricate model multicolor hydrogels via a straightforward mixing process of poly acrylonitrile-grafted methacrylamide(PANMAM),polymethacrylic acid(PMAA)and doped lanthanide(Eu/Tb)and zinc ions to form the interpenetrating dual-polymer gel networks.The hydrogels exhibit excellent tunability of multi-spectrum emission colors(including white light)by simply varying the stoichiometry of metal ions.Furthermore,taking the advantage of different metal ion response mechanisms,we have demonstrated the reversible acidity/alkalinity stimuli-responsive behaviors of white-light-emitting hydrogel(WLE gel).Meanwhile,the unique cross-linked network formed through hydrogen-bonding,metal-ligand coordination and ionic interaction is introduced to achieve favorable mechanical strength of hydrogels.These properties enable the possibility in obtaining fluorescent patterns on hydrogels,which are promising candidate for encrypted information with improved security.展开更多
基金The financial support of this work from the National Natural Science Foundation of China(No.51673194)Department of Science and Technology of Jilin Province(Nos.20180101196JC and 20180101170JC)。
文摘A straightforward coassembly strategy was developed for the preparation of polymeric nanoparticles driving by the intermolecular hydrogen bond between neutral poly(2-methyl-2-oxaozline)(PMeOx),tannic acid(TA) and doxorubicin hydrochloride(Dox).The occurrence of the hydrogen-bonding amongst the different functionalities within the formed nanoparticles was verified by infrared(IR) spectroscopy.Scanning electron microscopy(SEM),dynamic light scattering(DLS),UV-vis absorption and photoluminescent measurements indicated the rapid formation of uniform and water dispersible/stable nanoparticles.The relative poor stability of PMeOx-TA-Dox in fetal bovine serum(FBS) solution enabled the rapid separation of Dox and PMeOx-TA,facilitating the release of Dox and its entrance into cellular nuclei as revealed by confocal laser scanning microscopy(CLSM).The presented strategy may provide an efficient alternative for the construction of multifunctional nanomedicines.
基金The financial support of this work by the National Natural Science Foundation of China(No.51973026)the Jilin Provincial Education Departments(No.JJKH20201169KJ)。
文摘We have developed a facile strategy to fabricate model multicolor hydrogels via a straightforward mixing process of poly acrylonitrile-grafted methacrylamide(PANMAM),polymethacrylic acid(PMAA)and doped lanthanide(Eu/Tb)and zinc ions to form the interpenetrating dual-polymer gel networks.The hydrogels exhibit excellent tunability of multi-spectrum emission colors(including white light)by simply varying the stoichiometry of metal ions.Furthermore,taking the advantage of different metal ion response mechanisms,we have demonstrated the reversible acidity/alkalinity stimuli-responsive behaviors of white-light-emitting hydrogel(WLE gel).Meanwhile,the unique cross-linked network formed through hydrogen-bonding,metal-ligand coordination and ionic interaction is introduced to achieve favorable mechanical strength of hydrogels.These properties enable the possibility in obtaining fluorescent patterns on hydrogels,which are promising candidate for encrypted information with improved security.