期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Low-Density Parity-Check Codes:Highway to Channel Capacity
1
作者 liyuan song Shuyan Yu Qin Huang 《China Communications》 SCIE CSCD 2023年第2期235-256,共22页
Low-density parity-check(LDPC)codes are not only capacity-approaching,but also greatly suitable for high-throughput implementation.Thus,they are the most popular codes for high-speed data transmission in the past two ... Low-density parity-check(LDPC)codes are not only capacity-approaching,but also greatly suitable for high-throughput implementation.Thus,they are the most popular codes for high-speed data transmission in the past two decades.Thanks to the low-density property of their parity-check matrices,the optimal maximum a posteriori probability decoding of LDPC codes can be approximated by message-passing decoding with linear complexity and highly parallel nature.Then,it reveals that the approximation has to carry on Tanner graphs without short cycles and small trapping sets.Last,it demonstrates that well-designed LDPC codes with the aid of computer simulation and asymptotic analysis tools are able to approach the channel capacity.Moreover,quasi-cyclic(QC)structure is introduced to significantly facilitate their high-throughput implementation.In fact,compared to the other capacity-approaching codes,QC-LDPC codes can provide better area-efficiency and energy-efficiency.As a result,they are widely applied in numerous communication systems,e.g.,Landsat satellites,Chang’e Chinese Lunar mission,5G mobile communications and so on.What’s more,its extension to non-binary Galois fields has been adopted as the channel coding scheme for BeiDou navigation satellite system. 展开更多
关键词 LDPC codes SPARSITY high-speed MESSAGE-PASSING cycles trapping sets quasi-cyclic
下载PDF
Implementation and security analysis of practical quantum secure direct communication 被引量:16
2
作者 Ruoyang Qi Zhen Sun +7 位作者 Zaisheng Lin Penghao Niu Wentao Hao liyuan song Qin Huang Jiancun Gao Liuguo Yin Gui-Lu Long 《Light(Science & Applications)》 SCIE EI CAS CSCD 2019年第1期975-982,共8页
Rapid development of supercomputers and the prospect of quantum computers are posing increasingly serious threats to the security of communication.Using the principles of quantum mechanics,quantum communication offers... Rapid development of supercomputers and the prospect of quantum computers are posing increasingly serious threats to the security of communication.Using the principles of quantum mechanics,quantum communication offers provable security of communication and is a promising solution to counter such threats.Quantum secure direct communication(QSDC)is one important branch of quantum communication.In contrast to other branches of quantum communication,it transmits secret information directly.Recently,remarkable progress has been made in proof-of-principle experimental demonstrations of QSDC.However,it remains a technical feat to bring QSDC into a practical application.Here,we report the implementation of a practical quantum secure communication system.The security is analyzed in the Wyner wiretap channel theory.The system uses a coding scheme of concatenation of lowdensity parity-check(LDPC)codes and works in a regime with a realistic environment of high noise and high loss.The present system operates with a repetition rate of 1 MHz at a distance of 1.5 kilometers.The secure communication rate is 50 bps,sufficient to effectively send text messages and reasonably sized files of images and sounds. 展开更多
关键词 THEORY QUANTUM PROOF
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部