期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mode dynamics of Bose–Einstein condensates in a single-well potential
1
作者 应耀俊 孙李真 李海彬 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期254-261,共8页
We investigate dynamics of Bose–Einstein condensates(BECs) in a single-well potential using the mode-coupling method. Symmetry is shown to play a key role in the coupling between modes. A proper mode-coupling theory ... We investigate dynamics of Bose–Einstein condensates(BECs) in a single-well potential using the mode-coupling method. Symmetry is shown to play a key role in the coupling between modes. A proper mode-coupling theory of the dynamics of BECs in a single-well potential should include at least four modes. In this context, the ideal BEC system can be decomposed into two independent subsystems when the coupling is caused by external potential perturbation and is linear. The mode dynamics of non-ideal BECs with interaction shows rich behavior. The combination of nonlinear coupling and initial condition leads to the different regimes of mode dynamics, from regularity to non-regularity, which also indicates a change of the dependence of coupling on the symmetry of modes. 展开更多
关键词 Bose–Einstein condensate mode-coupling DYNAMICS SYMMETRY
下载PDF
Well-dispersed SnO2 nanocrystals on N-doped carbon nanowires as efficient electrocatalysts for carbon dioxide reduction 被引量:1
2
作者 Baohua Zhang lizhen sun +2 位作者 Yueqing Wang Si Chen Jintao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期7-14,共8页
The conversion of carbon dioxide into valuable organic compounds is a highly promising approach to address the energy issues and environmental problems(e.g., global warming). Herein, we presents a facile and efficient... The conversion of carbon dioxide into valuable organic compounds is a highly promising approach to address the energy issues and environmental problems(e.g., global warming). Herein, we presents a facile and efficient method to prepare highly dense and well-dispersed SnO2 nanocrystals on 1 D N-doped carbon nanowires as advanced catalysts for the efficient electroreduction of CO2 to formate. The ultrasmall SnO2 coated on the N-doped carbon nanowires(SnO2@N-CNW) has been synthesized via the simple hydrothermal treatment coupled with a pyrolysis process. The unique structure enables to expose the active tin oxide and also provides the facile pathways for rapid transfer of electron and electrolyte along with the highly porous carbon foam composed with interconnected carbon nanowires. Therefore, SnO2@NCNW electrocatalyst exhibits good durability and high selectivity for formate formation with a Faradaic efficiency of ca. 90%. This work demonstrates a simple method to rationally design high-dense tin oxide nanocrystals on the conductive carbon support as advanced catalysts for CO2 electroreduction. 展开更多
关键词 SNO2 nanocrystal N-DOPING ELECTROCATALYST CARBON dioxide reduction CARBON nanowire
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部