Inspired by the successful synthesis of h Hv-graphane[Nano Lett.15903(2015)],a new two-dimensional(2D)Janus material Cu-graphane is proposed based on the first-principles calculations.Without the spin-orbit coupling(S...Inspired by the successful synthesis of h Hv-graphane[Nano Lett.15903(2015)],a new two-dimensional(2D)Janus material Cu-graphane is proposed based on the first-principles calculations.Without the spin-orbit coupling(SOC)effect,Cu-graphane is a Dirac semimetal with a highly anisotropic Dirac cone,whose Fermi velocity ranges from 0.12×10^(5)m/s to2.9×10^(5)m/s.The Dirac cone near the Fermi level can be well described with an extended 2D Dirac model Hamiltonian.In the presence of the SOC effect,band splitting is observed around the Fermi level,and a large intrinsic spin Hall conductivity(ISHC)with a maximum value of 346(h/e)S/cm is predicted.Moreover,the spin Hall transport can be regulated by slightly adjusting the Fermi energy,e.g.,grid voltage or chemical doping.Our work not only proposes a new 2D Janus material with a highly anisotropic Dirac cone and a large ISHC,but also reveals that a large ISHC may exist in some Dirac systems.展开更多
Hydrogen evolution reaction(HER) is crucial for achieving sustainable development and carbon neutrality, and thus demands efficient catalysts, which necessitates fundamental theory to relieve trial-and-error experimen...Hydrogen evolution reaction(HER) is crucial for achieving sustainable development and carbon neutrality, and thus demands efficient catalysts, which necessitates fundamental theory to relieve trial-and-error experiment. To fast screen HER candidates, most studies focus on d-band center(ε)associated with the Gibbs energy of H* adsorption(ΔG). Unfortunately, εrule is not applicable to Pt single atoms on transition metal disulfides(Pt_(1)/TMDs) because of the additional contributions from p states of S atom. Here, we propose a new HER descriptor — d-band frontier(d) by defining the weight of d-band in the energy range of [-1.0 eV, 1.0 eV] of Pt single atoms. This dis exactly correlated with the ΔGof Pt_(1)/TMDs, and thus perfectly describes the structure–activity relationship, as validated by systematical experimental evidences. Moreover, this ddescriptor can be extended to Pt single atoms anchored on other supports(e.g., CN, C, MoO, and CoO), indicating its promising generality.展开更多
Using first-principle calculations, we predict a new family of stable two-dimensional(2 D) topological insulators(TI),monolayer Be_3 X_2(X = C,Si, Ge, Sn) with honeycomb Kagome lattice. Based on the configuration of B...Using first-principle calculations, we predict a new family of stable two-dimensional(2 D) topological insulators(TI),monolayer Be_3 X_2(X = C,Si, Ge, Sn) with honeycomb Kagome lattice. Based on the configuration of Be_3 C_2, which has been reported to be a 2 D Dirac material, we construct the other three 2 D materials and confirm their stability according to their chemical bonding properties and phonon-dispersion relationships. Because of their tiny spin-orbit coupling(SOC)gaps, Be_3 C_2 and Be_3 Si_2 are 2 D Dirac materials with high Fermi velocity at the same order of magnitude as that of graphene.For Be3 Ge2 and Be_3 Sn_2,the SOC gaps are 1.5 meV and 11.7 meV, and their topological nontrivial properties are also confirmed by their semi-infinite Dirac edge states. Our findings not only extend the family of 2 D Dirac materials, but also open an avenue to track new 2 DTI.展开更多
Based on the analysis and summary of traditional energy ecological footprint (EEF) and its research development at home and abroad, a modified method to measure energy ecological footprint is proposed by combining e...Based on the analysis and summary of traditional energy ecological footprint (EEF) and its research development at home and abroad, a modified method to measure energy ecological footprint is proposed by combining energy ecological footprint with the area of biological productive forest land from a standpoint of material flow "energy consumption - CO2 emissions - woodland absorption", and is used to measure the energy ecological footprint and carbon emissions in Tianjin City from 1995 to 2010. The results show that EEF per capita has increased from 1. 739 8 to 3.078 5 ghm2 during 1995 -2010, and has a significant correlation with GDP per capita in annual average growth rate (R~ =0. 877 6, P 〈0.05). Among the compositions of EEF, the percentage of coal footprint has decreased from 62% to 50%, while the others have increased to some de- gree. Meanwhile, the output value of EEF has increased from 5 687.71 to 23 061.93 yuan/ghm2, and the elastic coefficient of EEF which has in- creased from 0.15 to 0.69 shows approximate cyclical fluctuations. It is indicated that with the adjustment of energy structure in Tianjin in the past 16 years, energy utilization efficiency has been becoming increasingly bigger. However, ecological pressure on the environment is a growing problem in the next few years, so it is urgent to shift energy use patterns and increase energy conservation efforts for Tianjin City.展开更多
The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for ...The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for a parametric generalized strong vector equilibrium problem. By virtue of a nonlinear scalarization technique, a new density result of the solution mapping is obtained. Based on the density result, we give sufficient conditions for the lower semicontinuity and the Hausdorff upper semicontinuity of the solution mapping to the parametric generalized strong vector equilibrium problem. In addition, some examples were given to illustrate that our results improve ones in the literature.展开更多
The degradation of filtration performance in electret filter media during usage poses a significant challenge. Pre-charging of aerosols has been identified as an effective method to mitigate this issue. However, the e...The degradation of filtration performance in electret filter media during usage poses a significant challenge. Pre-charging of aerosols has been identified as an effective method to mitigate this issue. However, the effects of particle charging characteristics on the loading characteristics of electret filters still need a comprehensive understanding. In this study, a needle-cylinder corona charger was employed to pre-charge aerosols, and the particle charge state was determined by multiphysics simulation. The effects of particle charge polarity and charge quantity on the loading performance of the electret filter were quantitatively investigated. The results showed that the particle charge polarity had a negligible impact on the loading performance under the condition of the equivalent particle charge quantity. In addition, the charged particles effectively improved the efficiency degradation during the loading process of electret media, with higher charge quantities resulting in more pronounced improvements. The electrostatic attenuation factor showed a negative exponential correlation with the particle charge quantity. This was attributed to the uneven particle deposition on fiber surface due to the attraction of charged particles by the opposite charges on the electret fibers, which alleviated the effect of electrostatic shielding.展开更多
Heterogeneous peroxysulfates-based advanced oxidation processes(AOPs)have garnered significant attention for purifying organic wastewater since they offer many advantages like low cost,safe storage,facile activation a...Heterogeneous peroxysulfates-based advanced oxidation processes(AOPs)have garnered significant attention for purifying organic wastewater since they offer many advantages like low cost,safe storage,facile activation and reactive species participation[1].Nonradical and radical pathways have been proposed to be involved in peroxysulfates activation.展开更多
Sulfite (S(IV)) is a promising substitute for sulfate radical-based advanced oxidation processes.Here,a composite of in-situ anchoring Ni Co_(2)O_(4)nanosheets on biochar (BC) was firstly employed as a heterogeneous a...Sulfite (S(IV)) is a promising substitute for sulfate radical-based advanced oxidation processes.Here,a composite of in-situ anchoring Ni Co_(2)O_(4)nanosheets on biochar (BC) was firstly employed as a heterogeneous activator for sulfite (Ni Co_(2)O_(4)@BC-sulfite) to degrade atrazine (ATZ) in the neutral environment.The synergistic coupling of BC and Ni Co_(2)O_(4)endows the resulting composite excellent catalytic activity.82% of the degradation ratio of ATZ (1 mg/L) could be achieved within 10 min at initial concentrations of 0.6 g/L Ni Co_(2)O_(4)@BC,3.0 mmol/L sulfite in neutral environment.When further supplementing sulfite into the system at 20 min (considering the depletion of sulfite),outstanding degradation efficiency (100%) were achieved in the next 10 min without any other energy input by the Ni Co_(2)O_(4)@BC-sulfite system.The features of the prepared catalysts and the effects of some key parameters on ATZ degradation were systematically examined.A strong inner-sphere complexation (≡Co_(2)+/Ni^(2+)-SO_(3)^(2-)) was explored between sulfite and the metal sites on the Ni Co_(2)O_(4)@BC surface.The redox cycle of the surface metal efficiently mediated sulfite activation and triggered the series radical chain reactions.The generated radicals,in particular the surface-bound radicals were involved in ATZ degradation.High performance liquid chromatography-tandem mass spectrometry (LC-MS) technique was used to detect the degradation intermediates.Density functional theory (DFT) calculations were performed to illustrate the possible degradation pathways of ATZ.Finally,an underlying mechanism for ATZ removal was proposed.The present study offered a low-cost and sustainable catalyst for sulfite activation to remove ATZ in an environmentally friendly manner from wastewater.展开更多
Ammonia nitrogen (NH_(4)^(+)-N) is a ubiquitous environmental pollutant,especially in offshore aquaculture systems.Electrochemical oxidation is very promising to remove NH_(4)^(+)-N,but suffers from the use of preciou...Ammonia nitrogen (NH_(4)^(+)-N) is a ubiquitous environmental pollutant,especially in offshore aquaculture systems.Electrochemical oxidation is very promising to remove NH_(4)^(+)-N,but suffers from the use of precious metals anodes.In this work,a robust and cheap electrocatalyst,iron single-atoms distributed in nitrogen-doped carbon (Fe-SAs/N-C),was developed for electrochemical removal of NH_(4)^(+)-N from in wastewater containing chloride.The FeSAs/N-C catalyst exhibited superior activity than that of iron nanoparticles loaded carbon(Fe-NPs/N-C),unmodified carbon and conventional Ti/IrO_(2)-TiO_(2)-RuO_(2)electrodes.And high removal efficiency (>99%) could be achieved as well as high N_(2)selectivity (99.5%) at low current density.Further experiments and density functional theory (DFT) calculations demonstrated the indispensable role of single-atom iron in the promoted generation of chloride derived species for efficient removal of NH_(4)^(+)-N.This study provides promising inexpensive catalysts for NH_(4)^(+)-N removal in aquaculture wastewater.展开更多
Magnetic materials could realize the intriguing quantum anomalous Hall effect and metal-to-insulator transition when combined with band topology or electronic correlation,which have broad prospects in quantum informat...Magnetic materials could realize the intriguing quantum anomalous Hall effect and metal-to-insulator transition when combined with band topology or electronic correlation,which have broad prospects in quantum information,spintronics,and valleytronics.Here,we propose the approach of designing novel two-dimensional(2D)magnetic states via d-orbital-based superatomic lattices.Specifically,we chose triangular zirconium dichloride disks as superatoms to construct the honeycomb superatomic lattices.Using first-principles calculations,we identified a series of 2D magnetic states with varying sizes of superatoms.We found the non-uniform stoichiometries and geometric effect of superatomic lattice give rise to spin-polarized charges arranged in different magnetic configurations,containing ferromagnetic coloring triangles,antiferromagnetic honeycomb,and ferromagnetic kagome lattices.Attractively,these magnetic states are endowed with nontrivial band topology or strong correlation,forming an ideal Chern insulator or antiferromagnetic Dirac Mott insulator.Our work not only reveals the potential of d-orbital-based superatoms for generating unusual magnetic configurations,but also supplies a new avenue for material engineering at the nanoscale.展开更多
Van der Waals stacking of two-dimensional crystals with rotation or mismatch in lattice constants gives rise to rich physical phenomena that are closely related to the strong correlations and band topology.Twisted gra...Van der Waals stacking of two-dimensional crystals with rotation or mismatch in lattice constants gives rise to rich physical phenomena that are closely related to the strong correlations and band topology.Twisted graphene and silicene heterobilayers have been theoretically predicted to host a tunable transport gap due to the mismatch of Dirac cones in the graphene and silicene layers.However,experimental realization of such twisted structure is challenging.Here,we report the formation of twisted graphene/silicene bilayers on Ru(0001)crystal via intercalation.Different moirépatterns form as single-crystalline graphene grows over different grains of the Ru surface.After silicon intercalation,graphene/silicene bilayers are observed with different twisting angles on top of different grains of the Ru substrate.Our work provides a new pathway towards construction of graphene based twisted heterobilayers.展开更多
Brassinosteroid is an important hormone that interacts with auxin and gibberellin to regulate plant growth and development. However,there is currently a relative lack of information regarding brassinosteroid in apple....Brassinosteroid is an important hormone that interacts with auxin and gibberellin to regulate plant growth and development. However,there is currently a relative lack of information regarding brassinosteroid in apple. Previous study confirmed that exogenous brassinosteroid treatments increased growth and endogenous brassinosteroid, auxin, as well as gibberellin levels of apple nursery trees. Here we succeeded to find that exogenous brassinosteroid treatments upregulated the transcript expression of auxin biosynthesis, transport, and positive signal transduction genes as well as gibberellin biosynthesis genes. In contrast, the application of exogenous brassinosteroid downregulated the expression of genes encoding negative regulators of auxin and gibberellin signal transductions. Rapid responses of several brassinosteroid-,auxin-, and gibberellin-related genes to the brassinosteroid and brassinazole treatments inferred the crosstalk of BR and IAA or GA. Furthermore,the expression levels of cell growth-related genes were also enhanced by exogenous brassinosteroid. Auxin and gibberellin treatments also influenced growth of apple tree and enhanced the expression of brassinosteroid-and cell growth-related genes. These results indicate that the growth of apple tree is regulated by the interaction between brassinosteroid, auxin, and gibberellin. Our work opened new avenues for deep portfolio of apple tree growth and laid the foundation for future studies aimed at elucidating the mechanisms regulating hormone interactionsmediated growth in apple trees.展开更多
Rational engineering of oxygen vacancy(VO) at atomic precision is the key to comprehensively understanding the oxygen chemistry of oxide materials for catalytic oxidations. Here, we demonstrate that VO can be spatiall...Rational engineering of oxygen vacancy(VO) at atomic precision is the key to comprehensively understanding the oxygen chemistry of oxide materials for catalytic oxidations. Here, we demonstrate that VO can be spatially confined on the surface through a sophisticated surface hydrogen bond(HB) network.The HB network is constructed between a hydroxyl-rich Bi OCl surface and polyprotic phosphoric acid,which remarkably decreases the formation energy of surface VO by selectively weakening the metal–oxygen bonds in a short range. Thus, surface-confined VO enables us to unambiguously distinguish the intrafacial and suprafacial oxygen species associated with NO oxidation in two classical catalytic systems.Unlike randomly distributed bulk VO that benefits the thermocatalytic NO oxidation and lattice O diffusion by the dominant intrafacial mechanism, surface VOis demonstrated to favor the photocatalytic NO oxidation through a suprafacial scheme by energetically activating surface O2, which should be attributed to the spatial confinement nature of surface VO.展开更多
The template-directed assembly of planar pentacene molecules on epitaxial graphene grown on Ru(0001) (G/Ru) has been investigated by means of low-temperature scanning tunneling microscopy (STM) and density funct...The template-directed assembly of planar pentacene molecules on epitaxial graphene grown on Ru(0001) (G/Ru) has been investigated by means of low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM experiments find that pentacene adopts a highly selective and dispersed growth mode in the initial stage. By using DFT calculations including van der Waals interactions, we find that the configuration with pentacene adsorbed on face-centered cubic (fcc) regions of G/Ru is the most stable one, which accounts for the selective adsorption at low coverage. Moreover, at high coverage, we have successfully controlled the molecular assembly from amorphous, local ordering, to long-range order by optimizing the deposition rate and substrate temperature.展开更多
The genus Tetrastigma belongs to the Vitaceae family and contains over 100 species.This paper reviewed folk uses,chemical constituents,pharmacological activities,and clinical applications of the medicinal plants in th...The genus Tetrastigma belongs to the Vitaceae family and contains over 100 species.This paper reviewed folk uses,chemical constituents,pharmacological activities,and clinical applications of the medicinal plants in the genus Tetrastigma.In addition,the paper also discussed the current problems for the further studies.Up to now,more than 240 compounds were reported from the genus Tetrastigma,covering 74 flavonoids,14 terpenoids,19 steroids,21 phenylpropanoids,14 alkaloids and others constituents.Among them,flavonoids are the major and the characteristic chemical constituents in this genus.Modern pharmacological studies and clinical practice showed that the extracts and chemical constituents of Tetrastigma species possessed wide pharmacological activities including antitumor,antioxidative,hepatoprotective,antiviral,anti-inflammatory,and analgesic activities.The information summarized in this paper provides valuable clues for new drug discovery and an incentive to expand the research of genus Tetrastigma.展开更多
Metrics details Abstract Magnetic two-dimensional(2D)topological insulators with spontaneous magnetization have been predicted to host quantum anomalous Hall effects(QAHEs).For organic topological insulators,the QAHE ...Metrics details Abstract Magnetic two-dimensional(2D)topological insulators with spontaneous magnetization have been predicted to host quantum anomalous Hall effects(QAHEs).For organic topological insulators,the QAHE only exists in honeycomb or Kagome organometallic lattices based on theoretical calculations.Recently,coloring-triangle(CT)lattice has been found to be mathematically equivalent to a Kagome lattice,suggesting a potential 2D lattice to realize QAHE.Here,based on first-principles calculations,we predict an organometallic CT lattice,Cu-dicyanobenzene(DCB),to be a stable QAH insulator.It exhibits ferromagnetic(FM)properties as a result of the charge transfer from metal atoms to DCB molecules.Moreover,based on the Ising model,the Curie temperature of the FM ordering is calculated to be around 100 K.Both the Chern numbers and the chiral edge states of the semi-infinite Cu-DCB edge structure,which occur inside the spin-orbit coupling band gap,confirm its nontrivial topological properties.These make the Cu-DCB CT lattice an ideal candidate to enrich the family of QAH insulators.展开更多
Multiple myeloma(MM)is a hematologic malignancy in which plasma cells proliferate in the bone marrow,leading to osteolytic bone destruction.Bone involvement is present in up to 90%of patients with MM and is associated...Multiple myeloma(MM)is a hematologic malignancy in which plasma cells proliferate in the bone marrow,leading to osteolytic bone destruction.Bone involvement is present in up to 90%of patients with MM and is associated with pain and skeletal-related complications,such as pathologic vertebral compression fractures(VCFs).^([1])MM-associated VCFs cause spinal instability,back pain,spinal kyphosis,neurologic dysfunction,and subsequent respiratory complications,which markedly decrease the quality of life of affected patients.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074150,12174157,12174158,and 11874314)the Innovation and Entrepreneurship Talent Project of Jiangsu Province of China+1 种基金the Scientific Research Startup of Jiangsu University(Grant No.5501710001)the College Students’Innovation Training Program of Jiangsu Province of China(Grant No.202110299123Y)。
文摘Inspired by the successful synthesis of h Hv-graphane[Nano Lett.15903(2015)],a new two-dimensional(2D)Janus material Cu-graphane is proposed based on the first-principles calculations.Without the spin-orbit coupling(SOC)effect,Cu-graphane is a Dirac semimetal with a highly anisotropic Dirac cone,whose Fermi velocity ranges from 0.12×10^(5)m/s to2.9×10^(5)m/s.The Dirac cone near the Fermi level can be well described with an extended 2D Dirac model Hamiltonian.In the presence of the SOC effect,band splitting is observed around the Fermi level,and a large intrinsic spin Hall conductivity(ISHC)with a maximum value of 346(h/e)S/cm is predicted.Moreover,the spin Hall transport can be regulated by slightly adjusting the Fermi energy,e.g.,grid voltage or chemical doping.Our work not only proposes a new 2D Janus material with a highly anisotropic Dirac cone and a large ISHC,but also reveals that a large ISHC may exist in some Dirac systems.
基金supported by the National Natural Science Foundation of China(21872061,22102100)an the National Key Research and Development Program of China(2018YFC1800801)。
文摘Hydrogen evolution reaction(HER) is crucial for achieving sustainable development and carbon neutrality, and thus demands efficient catalysts, which necessitates fundamental theory to relieve trial-and-error experiment. To fast screen HER candidates, most studies focus on d-band center(ε)associated with the Gibbs energy of H* adsorption(ΔG). Unfortunately, εrule is not applicable to Pt single atoms on transition metal disulfides(Pt_(1)/TMDs) because of the additional contributions from p states of S atom. Here, we propose a new HER descriptor — d-band frontier(d) by defining the weight of d-band in the energy range of [-1.0 eV, 1.0 eV] of Pt single atoms. This dis exactly correlated with the ΔGof Pt_(1)/TMDs, and thus perfectly describes the structure–activity relationship, as validated by systematical experimental evidences. Moreover, this ddescriptor can be extended to Pt single atoms anchored on other supports(e.g., CN, C, MoO, and CoO), indicating its promising generality.
基金supported by the National Natural Science Foundation of China(Grant Nos.11674136 and 11564022)the Thousand Talents Plan-the Recruitment Program for Young Professionals,China(Grant No.1097816002)+4 种基金Yunnan Province for Recruiting High-Caliber Technological Talents,China(Grant No.1097816002)Reserve Talents for Yunnan Young and Middle-aged Academic and Technical Leaders,China(Grant No.2017HB010)the Academic Qinglan Project of Kunming University of Science and Technology(KUST),China(Grant No.1407840010)the Analysis and Testing Fund of KUST,China(Grant No.2017M20162230010)the High-level Talents of KUST,China(Grant No.1411909425)
文摘Using first-principle calculations, we predict a new family of stable two-dimensional(2 D) topological insulators(TI),monolayer Be_3 X_2(X = C,Si, Ge, Sn) with honeycomb Kagome lattice. Based on the configuration of Be_3 C_2, which has been reported to be a 2 D Dirac material, we construct the other three 2 D materials and confirm their stability according to their chemical bonding properties and phonon-dispersion relationships. Because of their tiny spin-orbit coupling(SOC)gaps, Be_3 C_2 and Be_3 Si_2 are 2 D Dirac materials with high Fermi velocity at the same order of magnitude as that of graphene.For Be3 Ge2 and Be_3 Sn_2,the SOC gaps are 1.5 meV and 11.7 meV, and their topological nontrivial properties are also confirmed by their semi-infinite Dirac edge states. Our findings not only extend the family of 2 D Dirac materials, but also open an avenue to track new 2 DTI.
文摘Based on the analysis and summary of traditional energy ecological footprint (EEF) and its research development at home and abroad, a modified method to measure energy ecological footprint is proposed by combining energy ecological footprint with the area of biological productive forest land from a standpoint of material flow "energy consumption - CO2 emissions - woodland absorption", and is used to measure the energy ecological footprint and carbon emissions in Tianjin City from 1995 to 2010. The results show that EEF per capita has increased from 1. 739 8 to 3.078 5 ghm2 during 1995 -2010, and has a significant correlation with GDP per capita in annual average growth rate (R~ =0. 877 6, P 〈0.05). Among the compositions of EEF, the percentage of coal footprint has decreased from 62% to 50%, while the others have increased to some de- gree. Meanwhile, the output value of EEF has increased from 5 687.71 to 23 061.93 yuan/ghm2, and the elastic coefficient of EEF which has in- creased from 0.15 to 0.69 shows approximate cyclical fluctuations. It is indicated that with the adjustment of energy structure in Tianjin in the past 16 years, energy utilization efficiency has been becoming increasingly bigger. However, ecological pressure on the environment is a growing problem in the next few years, so it is urgent to shift energy use patterns and increase energy conservation efforts for Tianjin City.
文摘The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for a parametric generalized strong vector equilibrium problem. By virtue of a nonlinear scalarization technique, a new density result of the solution mapping is obtained. Based on the density result, we give sufficient conditions for the lower semicontinuity and the Hausdorff upper semicontinuity of the solution mapping to the parametric generalized strong vector equilibrium problem. In addition, some examples were given to illustrate that our results improve ones in the literature.
基金supported by the National Key R&D Program of China (2019YFA0308500 and 2022YFA1204103)the National Natural Science Foundation of China (52250402, 52201231, 22372047, and 61888102)+1 种基金the Chinese Academy of Sciences (CAS) Project for Young Scientists in Basic Research (YSBR-003)the Fundamental Research Funds for the Central Universities。
基金supported by the National Natural Science Foundation of China(No.51936005,52176155)It is also supported by the Basic and Applied Basic Research Foundation of Guangdong Province,China(No.2023A1515011516)Guangzhou Science and Technology Plan Project,China(No.2024A04J9884).
文摘The degradation of filtration performance in electret filter media during usage poses a significant challenge. Pre-charging of aerosols has been identified as an effective method to mitigate this issue. However, the effects of particle charging characteristics on the loading characteristics of electret filters still need a comprehensive understanding. In this study, a needle-cylinder corona charger was employed to pre-charge aerosols, and the particle charge state was determined by multiphysics simulation. The effects of particle charge polarity and charge quantity on the loading performance of the electret filter were quantitatively investigated. The results showed that the particle charge polarity had a negligible impact on the loading performance under the condition of the equivalent particle charge quantity. In addition, the charged particles effectively improved the efficiency degradation during the loading process of electret media, with higher charge quantities resulting in more pronounced improvements. The electrostatic attenuation factor showed a negative exponential correlation with the particle charge quantity. This was attributed to the uneven particle deposition on fiber surface due to the attraction of charged particles by the opposite charges on the electret fibers, which alleviated the effect of electrostatic shielding.
基金supported by the National Natural Science Foundation of China(U22A20402,22206124,21936003,and 22076061)the National Key Research and Development Program of China(2019YFC1806203 and 2022YFC3702101)China Postdoctoral Science Foundation(2022M722078)。
文摘Heterogeneous peroxysulfates-based advanced oxidation processes(AOPs)have garnered significant attention for purifying organic wastewater since they offer many advantages like low cost,safe storage,facile activation and reactive species participation[1].Nonradical and radical pathways have been proposed to be involved in peroxysulfates activation.
基金supported by the National Science Foundation of China (Nos.22076057,21777052)the National Key R&D Program of China (No.2018YFC1802003)+1 种基金the Project for Application Foundation Frontier for Wuhan (No.2019020701011486)The Program of Introducing Talents of Discipline to Universities of China (111 program,B17019)。
文摘Sulfite (S(IV)) is a promising substitute for sulfate radical-based advanced oxidation processes.Here,a composite of in-situ anchoring Ni Co_(2)O_(4)nanosheets on biochar (BC) was firstly employed as a heterogeneous activator for sulfite (Ni Co_(2)O_(4)@BC-sulfite) to degrade atrazine (ATZ) in the neutral environment.The synergistic coupling of BC and Ni Co_(2)O_(4)endows the resulting composite excellent catalytic activity.82% of the degradation ratio of ATZ (1 mg/L) could be achieved within 10 min at initial concentrations of 0.6 g/L Ni Co_(2)O_(4)@BC,3.0 mmol/L sulfite in neutral environment.When further supplementing sulfite into the system at 20 min (considering the depletion of sulfite),outstanding degradation efficiency (100%) were achieved in the next 10 min without any other energy input by the Ni Co_(2)O_(4)@BC-sulfite system.The features of the prepared catalysts and the effects of some key parameters on ATZ degradation were systematically examined.A strong inner-sphere complexation (≡Co_(2)+/Ni^(2+)-SO_(3)^(2-)) was explored between sulfite and the metal sites on the Ni Co_(2)O_(4)@BC surface.The redox cycle of the surface metal efficiently mediated sulfite activation and triggered the series radical chain reactions.The generated radicals,in particular the surface-bound radicals were involved in ATZ degradation.High performance liquid chromatography-tandem mass spectrometry (LC-MS) technique was used to detect the degradation intermediates.Density functional theory (DFT) calculations were performed to illustrate the possible degradation pathways of ATZ.Finally,an underlying mechanism for ATZ removal was proposed.The present study offered a low-cost and sustainable catalyst for sulfite activation to remove ATZ in an environmentally friendly manner from wastewater.
基金supported by the Natural Science Foundation of Hubei Province of China(No. 2020CFB382)the National Natural Science Foundation of China(No. 22176068)the Research and Innovation Initiatives of WHPU(No. 2022J03)。
文摘Ammonia nitrogen (NH_(4)^(+)-N) is a ubiquitous environmental pollutant,especially in offshore aquaculture systems.Electrochemical oxidation is very promising to remove NH_(4)^(+)-N,but suffers from the use of precious metals anodes.In this work,a robust and cheap electrocatalyst,iron single-atoms distributed in nitrogen-doped carbon (Fe-SAs/N-C),was developed for electrochemical removal of NH_(4)^(+)-N from in wastewater containing chloride.The FeSAs/N-C catalyst exhibited superior activity than that of iron nanoparticles loaded carbon(Fe-NPs/N-C),unmodified carbon and conventional Ti/IrO_(2)-TiO_(2)-RuO_(2)electrodes.And high removal efficiency (>99%) could be achieved as well as high N_(2)selectivity (99.5%) at low current density.Further experiments and density functional theory (DFT) calculations demonstrated the indispensable role of single-atom iron in the promoted generation of chloride derived species for efficient removal of NH_(4)^(+)-N.This study provides promising inexpensive catalysts for NH_(4)^(+)-N removal in aquaculture wastewater.
基金supported in part by the Key R&D of the Ministry of Science and Technology(No.2022YFA1204103).
文摘Magnetic materials could realize the intriguing quantum anomalous Hall effect and metal-to-insulator transition when combined with band topology or electronic correlation,which have broad prospects in quantum information,spintronics,and valleytronics.Here,we propose the approach of designing novel two-dimensional(2D)magnetic states via d-orbital-based superatomic lattices.Specifically,we chose triangular zirconium dichloride disks as superatoms to construct the honeycomb superatomic lattices.Using first-principles calculations,we identified a series of 2D magnetic states with varying sizes of superatoms.We found the non-uniform stoichiometries and geometric effect of superatomic lattice give rise to spin-polarized charges arranged in different magnetic configurations,containing ferromagnetic coloring triangles,antiferromagnetic honeycomb,and ferromagnetic kagome lattices.Attractively,these magnetic states are endowed with nontrivial band topology or strong correlation,forming an ideal Chern insulator or antiferromagnetic Dirac Mott insulator.Our work not only reveals the potential of d-orbital-based superatoms for generating unusual magnetic configurations,but also supplies a new avenue for material engineering at the nanoscale.
基金the Ministry of Science and Technology of China(Nos.2019YFA0308500 and 2018YFA0305800)the National Natural Science Foundation of China(Nos.61888102,51991340,and 52072401)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(No.YSBR-003).
文摘Van der Waals stacking of two-dimensional crystals with rotation or mismatch in lattice constants gives rise to rich physical phenomena that are closely related to the strong correlations and band topology.Twisted graphene and silicene heterobilayers have been theoretically predicted to host a tunable transport gap due to the mismatch of Dirac cones in the graphene and silicene layers.However,experimental realization of such twisted structure is challenging.Here,we report the formation of twisted graphene/silicene bilayers on Ru(0001)crystal via intercalation.Different moirépatterns form as single-crystalline graphene grows over different grains of the Ru surface.After silicon intercalation,graphene/silicene bilayers are observed with different twisting angles on top of different grains of the Ru substrate.Our work provides a new pathway towards construction of graphene based twisted heterobilayers.
基金sponsored by the Chinese Postdoctoral Science Foundation (2015K3080215822)the Ecological Adaptability Selection of Apple Superior Stock and Scion Combinations in the Loess Plateau (A2990215082)+5 种基金the Screening and Interaction Molecular Mechanism of Apple Stock and Scion Combinations (K3380217027)the National Apple Industry Technology System of the Agriculture Ministry of China (CARS-27)the National Spark Plan Program (2014GA850002)the Science and Technology Innovative Engineering Project in Shaanxi Province of China (2015NY114)the Innovation Project of Science and Technology of Shaanxi Province (2016TZC-N-11-6)the Key Research Project of Shaanxi Province (2017ZDXM-NY-019)
文摘Brassinosteroid is an important hormone that interacts with auxin and gibberellin to regulate plant growth and development. However,there is currently a relative lack of information regarding brassinosteroid in apple. Previous study confirmed that exogenous brassinosteroid treatments increased growth and endogenous brassinosteroid, auxin, as well as gibberellin levels of apple nursery trees. Here we succeeded to find that exogenous brassinosteroid treatments upregulated the transcript expression of auxin biosynthesis, transport, and positive signal transduction genes as well as gibberellin biosynthesis genes. In contrast, the application of exogenous brassinosteroid downregulated the expression of genes encoding negative regulators of auxin and gibberellin signal transductions. Rapid responses of several brassinosteroid-,auxin-, and gibberellin-related genes to the brassinosteroid and brassinazole treatments inferred the crosstalk of BR and IAA or GA. Furthermore,the expression levels of cell growth-related genes were also enhanced by exogenous brassinosteroid. Auxin and gibberellin treatments also influenced growth of apple tree and enhanced the expression of brassinosteroid-and cell growth-related genes. These results indicate that the growth of apple tree is regulated by the interaction between brassinosteroid, auxin, and gibberellin. Our work opened new avenues for deep portfolio of apple tree growth and laid the foundation for future studies aimed at elucidating the mechanisms regulating hormone interactionsmediated growth in apple trees.
基金the National Key Research and Development Program of China (2016YFA0203000)National Natural Science Funds for Distinguished Young Scholars (21425728)+2 种基金the National Natural Science Foundation of China (21872061)111 Project (B17019)Self-Determined Research Funds of CCNU from the Colleges’ Basic Research and Operation of MOE (CCNU16A02029)。
文摘Rational engineering of oxygen vacancy(VO) at atomic precision is the key to comprehensively understanding the oxygen chemistry of oxide materials for catalytic oxidations. Here, we demonstrate that VO can be spatially confined on the surface through a sophisticated surface hydrogen bond(HB) network.The HB network is constructed between a hydroxyl-rich Bi OCl surface and polyprotic phosphoric acid,which remarkably decreases the formation energy of surface VO by selectively weakening the metal–oxygen bonds in a short range. Thus, surface-confined VO enables us to unambiguously distinguish the intrafacial and suprafacial oxygen species associated with NO oxidation in two classical catalytic systems.Unlike randomly distributed bulk VO that benefits the thermocatalytic NO oxidation and lattice O diffusion by the dominant intrafacial mechanism, surface VOis demonstrated to favor the photocatalytic NO oxidation through a suprafacial scheme by energetically activating surface O2, which should be attributed to the spatial confinement nature of surface VO.
基金This work was financially supported by the Ministry of Science and Technology (MOST Nos. 2011CB921702 and 2011CB932700), National Natural Science Foundation of China (NSFC No. 61222112), Multilevel Molecular Assemblies: Structure, Dynamics, and Functions (TRR61), Shanghai Supercomputer Center (SSC), and Chinese Academy of Sciences (CAS) in China. WAH acknowledges support from the UK Car-Parinello consortium, grant No. EP/F037783/1.
文摘The template-directed assembly of planar pentacene molecules on epitaxial graphene grown on Ru(0001) (G/Ru) has been investigated by means of low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM experiments find that pentacene adopts a highly selective and dispersed growth mode in the initial stage. By using DFT calculations including van der Waals interactions, we find that the configuration with pentacene adsorbed on face-centered cubic (fcc) regions of G/Ru is the most stable one, which accounts for the selective adsorption at low coverage. Moreover, at high coverage, we have successfully controlled the molecular assembly from amorphous, local ordering, to long-range order by optimizing the deposition rate and substrate temperature.
基金the National Natural Science Foundation of China,China(No.81703819 and No.81874369)Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine(No.2017-04)+1 种基金Hunan Provincial Key Laboratory of Dong Medicine(No.2015TP1020-02)Students Research Innovative Program of Hunan Province(No.2018-413)。
文摘The genus Tetrastigma belongs to the Vitaceae family and contains over 100 species.This paper reviewed folk uses,chemical constituents,pharmacological activities,and clinical applications of the medicinal plants in the genus Tetrastigma.In addition,the paper also discussed the current problems for the further studies.Up to now,more than 240 compounds were reported from the genus Tetrastigma,covering 74 flavonoids,14 terpenoids,19 steroids,21 phenylpropanoids,14 alkaloids and others constituents.Among them,flavonoids are the major and the characteristic chemical constituents in this genus.Modern pharmacological studies and clinical practice showed that the extracts and chemical constituents of Tetrastigma species possessed wide pharmacological activities including antitumor,antioxidative,hepatoprotective,antiviral,anti-inflammatory,and analgesic activities.The information summarized in this paper provides valuable clues for new drug discovery and an incentive to expand the research of genus Tetrastigma.
基金Work in China is supported by the National Natural Science Foundation of China(Nos.51922011,61888102,and 11974045)the National Key Research&Development Program of China(Nos.2016YFA0202300,2018YFA0305800,and 2019YFA0308500)+1 种基金the CAS Pioneer Hundred Talents Program,K.C.Wong Education Foundation,the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB30000000)Beijing Institute of Technology Research Fund Program for Young Scholars,A portion of the research was performed in CAS Key Laboratory of Vacuum Physics,Computational resources were provided by the National Supercomputing Center in Tianjin,Work in the USA(S.B.Z.)was supported by U.S.DOE under Grant No.DE-SC0002623.
文摘Metrics details Abstract Magnetic two-dimensional(2D)topological insulators with spontaneous magnetization have been predicted to host quantum anomalous Hall effects(QAHEs).For organic topological insulators,the QAHE only exists in honeycomb or Kagome organometallic lattices based on theoretical calculations.Recently,coloring-triangle(CT)lattice has been found to be mathematically equivalent to a Kagome lattice,suggesting a potential 2D lattice to realize QAHE.Here,based on first-principles calculations,we predict an organometallic CT lattice,Cu-dicyanobenzene(DCB),to be a stable QAH insulator.It exhibits ferromagnetic(FM)properties as a result of the charge transfer from metal atoms to DCB molecules.Moreover,based on the Ising model,the Curie temperature of the FM ordering is calculated to be around 100 K.Both the Chern numbers and the chiral edge states of the semi-infinite Cu-DCB edge structure,which occur inside the spin-orbit coupling band gap,confirm its nontrivial topological properties.These make the Cu-DCB CT lattice an ideal candidate to enrich the family of QAH insulators.
基金supported by a grant from the Capital Health Research and Development of Special(No.2020-2-5091).
文摘Multiple myeloma(MM)is a hematologic malignancy in which plasma cells proliferate in the bone marrow,leading to osteolytic bone destruction.Bone involvement is present in up to 90%of patients with MM and is associated with pain and skeletal-related complications,such as pathologic vertebral compression fractures(VCFs).^([1])MM-associated VCFs cause spinal instability,back pain,spinal kyphosis,neurologic dysfunction,and subsequent respiratory complications,which markedly decrease the quality of life of affected patients.