Architecture analysis & design language (AADL) has been increasingly adopted in the design of em- bedded systems, and corresponding scheduling and formal verification have been well studied. However, little work ta...Architecture analysis & design language (AADL) has been increasingly adopted in the design of em- bedded systems, and corresponding scheduling and formal verification have been well studied. However, little work takes code distribution and architecture exploration into ac- count, particularly considering clock constraints, for dis- tributed multi-processor systems. In this paper, we present an overview of our approach to handle these concerns, together with the associated toolchain, AADL-PoLYCHRONY-SYNDEx. First, in order to avoid semantic ambiguities of AADL, the polychronous/multiclock semantics of AADL, based on a polychronous model of computation, is considered. Clock synthesis is then carried out in POLYCHRONY, which bridges the gap between the polychronous semantics and the syn- chronous semantics of SYNDEx. The same timing semantics is always preserved in order to ensure the correctness of the transformations between different formalisms. Code distri- bution and corresponding scheduling is carried out on the obtained SYNDEx model in the last step, which enables the exploration of architectures originally specified in AADL. Our contribution provides a fast yet efficient architecture ex- ploration approach for the design of distributed real-time and embedded systems. An avionic case study is used here to illustrate our approach.展开更多
文摘Architecture analysis & design language (AADL) has been increasingly adopted in the design of em- bedded systems, and corresponding scheduling and formal verification have been well studied. However, little work takes code distribution and architecture exploration into ac- count, particularly considering clock constraints, for dis- tributed multi-processor systems. In this paper, we present an overview of our approach to handle these concerns, together with the associated toolchain, AADL-PoLYCHRONY-SYNDEx. First, in order to avoid semantic ambiguities of AADL, the polychronous/multiclock semantics of AADL, based on a polychronous model of computation, is considered. Clock synthesis is then carried out in POLYCHRONY, which bridges the gap between the polychronous semantics and the syn- chronous semantics of SYNDEx. The same timing semantics is always preserved in order to ensure the correctness of the transformations between different formalisms. Code distri- bution and corresponding scheduling is carried out on the obtained SYNDEx model in the last step, which enables the exploration of architectures originally specified in AADL. Our contribution provides a fast yet efficient architecture ex- ploration approach for the design of distributed real-time and embedded systems. An avionic case study is used here to illustrate our approach.