期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Optimization of DNA Staining Technology for Development of Autonomous Microbe Sensor for Injection Seawater Systems 被引量:2
1
作者 Mohammed A. Al-Moniee Xiangyang Zhu +4 位作者 lone tang Susanne Juhler Fuad I. Nuwaiser Peter F. Sanders Fahad N. Al-Abeedi 《Journal of Sensor Technology》 2016年第3期27-45,共19页
Microbial activity in the water injection system in oil and gas industry leads to an array of challenges, including biofouling, injectivity loss, reservoir plugging, and microbiologically influenced corrosion (MIC). A... Microbial activity in the water injection system in oil and gas industry leads to an array of challenges, including biofouling, injectivity loss, reservoir plugging, and microbiologically influenced corrosion (MIC). An effective mitigation strategy requires online and real-time monitoring of microbial activity and growth in the system so that the operators can apply and adjust counter-measures quickly and properly. The previous study [1] identified DNA staining technology-with PicoGreen and SYBR Green dyes—as a very promising method for automated, online determination of microbial cell abundance in the vast Saudi Aramco injection seawater systems. This study evaluated DNA staining technology on detection limit, automation potential, and temperature stability for the construction of automated sensor prototype. DNA staining with SYBR Green dye was determined to be better suited for online and real-time monitoring of microbial activity in the Saudi Aramco seawater systems. SYBR Green staining does not require sample pre-treatment, and the fluorescence signal intensity is more stable at elevated temperatures up to 30℃. The lower detection limit of 2 × 10<sup>3</sup>/ml was achieved under the optimized conditions, which is sufficient to detect microbial numbers in Saudi Aramco injection seawater. Finally, the requirements for design and construction of SYBR-based automated sensor prototype were determined. 展开更多
关键词 DNA Staining Fluorescence Detection Automated Monitoring Real-Time Detection Microbial Sensor Prototype Injection Water
下载PDF
Validation of Autonomous Microbe Sensor Prototype for Monitoring of Microorganisms in Injection Seawater Systems 被引量:1
2
作者 Mohammed A. Al-Moniee Xiangyang Zhu +5 位作者 lone tang Fuad I. Nuwaiser Niels V. Voigt Peter F. Sanders Fahad N. Al-Abeedi Hanaa H. Al-Habboubi 《Journal of Sensor Technology》 2016年第4期81-100,共21页
Microbial growth in the water injection system is a well-known problem with severe operational and financial consequences for the petroleum industry, including microbiologically influenced corrosion (MIC), reduced inj... Microbial growth in the water injection system is a well-known problem with severe operational and financial consequences for the petroleum industry, including microbiologically influenced corrosion (MIC), reduced injectivity, reservoir plugging, production downtime, and extensive repair costs. Monitoring of system microbiology is required in any mitigation strategy, enabling operators to apply and adjust countermeasures properly and in due time. In previous studies [1] [2], DNA staining technology with SYBR Green dye was evaluated to have a sufficient detection limit and automation potential for real-time detection of microbial activity in the Saudi Aramco injection seawater. In this study, technical requirements and design solutions were defined, and an autonomous microbe sensor (AMS) prototype was constructed, tested and optimized in the laboratory, and validated in the field for automated detection of microorganisms in the harsh Saudi Arabia desert environment and injection seawater. The AMS prototype was able to monitor and follow the general microbial status in the system, including detection of periods with increased microbial growth or decreased microbial numbers following biocide injection. The infield AMS detection limit was 10<sup>5</sup> cells/mL. The long-term field testing also identified the areas for technical improvement and optimization for further development of a more robust and better performing commercial microbial sensing device. 展开更多
关键词 DNA Staining Automated Monitoring Autonomous Microbe Sensor Microbial Sensor Prototype Injection Seawater
下载PDF
Deployment of Pre-Industrial Autonomous Microbe Sensor in Saudi Arabia’s Injection Seawater System
3
作者 Mohammed A.Al-Moniee Xiangyang Zhu +7 位作者 Rikke Markfoged Aabdullah H.Al-Wadei Poul L.Pedersen Anders K.Tuxen Fuad I.Al-Nuwaiser lone tang Tinna Staghoj Roesen Thomas Lundgaard 《Journal of Sensor Technology》 2018年第1期1-17,共17页
Microbial growth in water injection systems can lead to many problems, including biofouling, water quality deterioration, injectivity loss, microbial corrosion, and reservoir formation damage. Monitoring of microbial ... Microbial growth in water injection systems can lead to many problems, including biofouling, water quality deterioration, injectivity loss, microbial corrosion, and reservoir formation damage. Monitoring of microbial activities is required in any mitigation strategy, enabling operators to apply and adjust countermeasures properly and in due time. In this study, the pre-industrial autonomous microbe sensor (AMS) was constructed with technical improvements from the prototype for increased sensitivity, durability, robustness, and maintainability. The pre-industrial AMS was lab validated, field proven, and deployed at critical locations of seawater injection network for automated detection of microorganisms under the Saudi Arabia’s harsh environment. An excellent correlation between AMS measurement data (fluorescence count) and actual count of microbial cell number under microscope was established (coefficient of determination, R2 > 0.99) for converting AMS fluorescence count to cell numbers (cell mL-1) in the injection seawater. The pre-industrial AMS only required monthly maintenance with solutions refill, and was able to cope with hot summer months even without protection in an air-conditioned shelter. The study team recommended wider deployment of the online AMS for real-time monitoring of bacteria numbers in the various strategic locations in Saudi Aramco’s complex seawater injection network, as an integral component of pipeline corrosion and leak mitigation program. 展开更多
关键词 Automated Monitoring AUTONOMOUS MICROBE SENSOR Microbial SENSOR DNA STAINING INJECTION Seawater
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部