A graph G is induced matching extendable if every induced matching of G is included in a perfect matching of G. A graph G is generalized induced matching extendable if every induced matching of G is included in a maxi...A graph G is induced matching extendable if every induced matching of G is included in a perfect matching of G. A graph G is generalized induced matching extendable if every induced matching of G is included in a maximum matching of G. A graph G is claw-free, if G dose not contain any induced subgraph isomorphic to K1,3. The k-th power of G, denoted by Gu, is the graph with vertex set V(G) in which two vertices are adjacent if and only if the distance between them is at most k in G. In this paper we show that, if the maximum matchings of G and G3 have the same cardinality, then G3 is generalized induced matching extendable. We also show that this result is best possible. As a result, we show that if G is a connected claw-flee graph, then G3 is generalized induced matching extendable.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10601051 90818020)the Natural Science Foundation of Zhejiang Province (Grant No. Y6090472)
文摘A graph G is induced matching extendable if every induced matching of G is included in a perfect matching of G. A graph G is generalized induced matching extendable if every induced matching of G is included in a maximum matching of G. A graph G is claw-free, if G dose not contain any induced subgraph isomorphic to K1,3. The k-th power of G, denoted by Gu, is the graph with vertex set V(G) in which two vertices are adjacent if and only if the distance between them is at most k in G. In this paper we show that, if the maximum matchings of G and G3 have the same cardinality, then G3 is generalized induced matching extendable. We also show that this result is best possible. As a result, we show that if G is a connected claw-flee graph, then G3 is generalized induced matching extendable.