The conventional stationary Al content Al GaN electron blocking layer(EBL) in ultraviolet light-emitting diode(UV LED) is optimized by employing a linearly graded Al Ga N inserting layer which is 2.0 nm Al_(0.3) Ga_(0...The conventional stationary Al content Al GaN electron blocking layer(EBL) in ultraviolet light-emitting diode(UV LED) is optimized by employing a linearly graded Al Ga N inserting layer which is 2.0 nm Al_(0.3) Ga_(0.7) N/5.0 nm Alx Ga_(1-x) N/8.0 nm Al_(0.3) Ga_(0.7) N with decreasing value of x. The results indicate that the internal quantum efficiency is significantly improved and the efficiency droop is mitigated by using the proposed structure. These improvements are attributed to the increase of the effective barrier height for electrons and the reduction of the effective barrier height for holes,which result in an increased hole injection efficiency and a decreased electron leakage into the p-type region. In addition,the linearly graded AlGaN inserting layer can generate more holes in EBL due to the polarization-induced hole doping and a tunneling effect probably occurs to enhance the hole transportation to the active regions, which will be beneficial to the radiative recombination.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61874161 and 11474105)the Science and Technology Program of Guangdong Province,China(Grant No.2017B010127001)+1 种基金the Science and Technology of Shenzhen City,China(Grant No.GJHZ20180416164721073)the Education Department Funding of Guangdong Province,China(Grant No.2017KZDXM022)
文摘The conventional stationary Al content Al GaN electron blocking layer(EBL) in ultraviolet light-emitting diode(UV LED) is optimized by employing a linearly graded Al Ga N inserting layer which is 2.0 nm Al_(0.3) Ga_(0.7) N/5.0 nm Alx Ga_(1-x) N/8.0 nm Al_(0.3) Ga_(0.7) N with decreasing value of x. The results indicate that the internal quantum efficiency is significantly improved and the efficiency droop is mitigated by using the proposed structure. These improvements are attributed to the increase of the effective barrier height for electrons and the reduction of the effective barrier height for holes,which result in an increased hole injection efficiency and a decreased electron leakage into the p-type region. In addition,the linearly graded AlGaN inserting layer can generate more holes in EBL due to the polarization-induced hole doping and a tunneling effect probably occurs to enhance the hole transportation to the active regions, which will be beneficial to the radiative recombination.