A novel synthesis of hierarchical porous carbons (HPCs)with 3D open-cell structure based on nanosilica- embedded emulsion-templated polymerization was reported. An oil-in-water emulsion containing SiO2 colloids was ...A novel synthesis of hierarchical porous carbons (HPCs)with 3D open-cell structure based on nanosilica- embedded emulsion-templated polymerization was reported. An oil-in-water emulsion containing SiO2 colloids was fabricated using liquid paraffin as an oil phase, resorcinol/formaldehyde and silica sol as an aqueous phase, and Span 80/Tween 80 as emulsifiers. HPCs with macropore cores, open meso/ macropore windows, and abundant micropores were synthesized by the polymerization and carbonization of the emulsion, followed by scaffold removal and further KOH activation. A typical HPCs sample as supercapacitor electrode shows the charge/discharge capability under large loading current density (30 A/g) coupling with a reasonable electrochemical capacitance in KOH electrolyte solution.展开更多
Partially graphitic micro- and mesoporous carbon microspheres (GMMCMs) were synthesized using hydrotbermal emulsion polymerization followed by KOH activation and catalytic graphitization. The resulting GMMCMs show m...Partially graphitic micro- and mesoporous carbon microspheres (GMMCMs) were synthesized using hydrotbermal emulsion polymerization followed by KOH activation and catalytic graphitization. The resulting GMMCMs show micro- and mesopores with a specific surface area of 1113 m2/g, regular spherical shape with diameters of 0.5-1.0 μm and a partially graphitic structure with a low internal resistance of 0.34 Ω. The graphitic carbons as electrode for supercapacitor exhibit a fast ion-transport and rapid charge-discharge feature, and a high-rate electrochemical performance. The typical GMMCM electrode shows a specific capacitance of 220 F/g at 1.0 A/g, and 185 F/g under a high current density of 20.0 A/g in a 6 mol/L KOH electrolyte.展开更多
A novel zinc tartrate oriented hydrothermal synthesis of microporous carbons was reported. Zinc–organic complex obtained via a simple chelation reaction of zinc ions and tartaric acid is introduced into the networks ...A novel zinc tartrate oriented hydrothermal synthesis of microporous carbons was reported. Zinc–organic complex obtained via a simple chelation reaction of zinc ions and tartaric acid is introduced into the networks of resorcinol/formaldehyde polymer under hydrothermal condition. After carbonization process, the resultant microporous carbons achieve high surface area(up to 1255 m^2/g) and large mean pore size(1.99 nm) which guarantee both high specific capacitance(225 F/g at 1.0 A/g) and fast charge/discharge operation(20 A/g) when used as a supercapacitor electrode. Besides, the carbon electrode shows good cycling stability, with 93% capacitance retention at 1.0 A/g after 1000 cycles. The welldesigned and high-performance microporous carbons provide important prospects for supercapacitor applications.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21207099 and 21273162)Science and Technology Commission of Shanghai Municipality,China(Nos. 11nm0501000 and 12ZR1451100)Key Subject of Shanghai Municipal Education Commission(No.J50102)
文摘A novel synthesis of hierarchical porous carbons (HPCs)with 3D open-cell structure based on nanosilica- embedded emulsion-templated polymerization was reported. An oil-in-water emulsion containing SiO2 colloids was fabricated using liquid paraffin as an oil phase, resorcinol/formaldehyde and silica sol as an aqueous phase, and Span 80/Tween 80 as emulsifiers. HPCs with macropore cores, open meso/ macropore windows, and abundant micropores were synthesized by the polymerization and carbonization of the emulsion, followed by scaffold removal and further KOH activation. A typical HPCs sample as supercapacitor electrode shows the charge/discharge capability under large loading current density (30 A/g) coupling with a reasonable electrochemical capacitance in KOH electrolyte solution.
基金supported by the National Natural Science Foundation of China (Nos. 21207099, 21273162)Science and Technology Commission of Shanghai Municipality, China (Nos. 11nm0501000, 12ZR1451100)+1 种基金Key Subject of Shanghai Municipal Education Commission (No. J50102)Fundamental Research Funds for the Central Universities (No. 2011KJ023)
文摘Partially graphitic micro- and mesoporous carbon microspheres (GMMCMs) were synthesized using hydrotbermal emulsion polymerization followed by KOH activation and catalytic graphitization. The resulting GMMCMs show micro- and mesopores with a specific surface area of 1113 m2/g, regular spherical shape with diameters of 0.5-1.0 μm and a partially graphitic structure with a low internal resistance of 0.34 Ω. The graphitic carbons as electrode for supercapacitor exhibit a fast ion-transport and rapid charge-discharge feature, and a high-rate electrochemical performance. The typical GMMCM electrode shows a specific capacitance of 220 F/g at 1.0 A/g, and 185 F/g under a high current density of 20.0 A/g in a 6 mol/L KOH electrolyte.
基金financially supported by the National Natural Science Foundation of China(Nos.21207099,21273162,21473122)the Science and Technology Commission of Shanghai Municipality,China(No.14DZ2261100)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Large Equipment Test Foundation of Tongji University
文摘A novel zinc tartrate oriented hydrothermal synthesis of microporous carbons was reported. Zinc–organic complex obtained via a simple chelation reaction of zinc ions and tartaric acid is introduced into the networks of resorcinol/formaldehyde polymer under hydrothermal condition. After carbonization process, the resultant microporous carbons achieve high surface area(up to 1255 m^2/g) and large mean pore size(1.99 nm) which guarantee both high specific capacitance(225 F/g at 1.0 A/g) and fast charge/discharge operation(20 A/g) when used as a supercapacitor electrode. Besides, the carbon electrode shows good cycling stability, with 93% capacitance retention at 1.0 A/g after 1000 cycles. The welldesigned and high-performance microporous carbons provide important prospects for supercapacitor applications.