期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Non-liD Recommender Systems: A Review and Framework of Recommendation Paradigm Shifting 被引量:8
1
作者 longbing cao 《Engineering》 SCIE EI 2016年第2期212-224,共13页
While recommendation plays an increasingly critical role in our living, study, work, and entertainment, the recommendations we receive are often for irrelevant, duplicate, or uninteresting products and ser- vices. A c... While recommendation plays an increasingly critical role in our living, study, work, and entertainment, the recommendations we receive are often for irrelevant, duplicate, or uninteresting products and ser- vices. A critical reason for such bad recommendations lies in the intrinsic assumption that recommend- ed users and items are independent and identically distributed (liD) in existing theories and systems. Another phenomenon is that, while tremendous efforts have been made to model specific aspects of users or items, the overall user and item characteristics and their non-IIDness have been overlooked. In this paper, the non-liD nature and characteristics of recommendation are discussed, followed by the non-liD theoretical framework in order to build a deep and comprehensive understanding of the in- trinsic nature of recommendation problems, from the perspective of both couplings and heterogeneity. This non-liD recommendation research triggers the paradigm shift from lid to non-liD recommendation research and can hopefully deliver informed, relevant, personalized, and actionable recommendations. It creates exciting new directions and fundamental solutions to address various complexities including cold-start, sparse data-based, cross-domain, group-based, and shilling attack-related issues. 展开更多
关键词 Independent and identically distributed (liD)Non-liDHeterogeneityCoupling relationshipCoupling learningRelational learningllDness learningNon-IIDness learningRecommender systemRecommendationNon-liD recommendation
下载PDF
Novel Apriori-Based Multi-Label Learning Algorithm by Exploiting Coupled Label Relationship 被引量:1
2
作者 Zhenwu Wang longbing cao 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期206-214,共9页
It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical informati... It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical information is used to analyze the coupled label relationship.In this work,firstly Bayesian and hypothesis testing methods are applied to predict the label set size of testing samples within their k nearest neighbor samples,which combines global and local statistical information,and then apriori algorithm is used to mine the label coupling relationship among multiple labels rather than pairwise labels,which can exploit the label coupling relations more accurately and comprehensively.The experimental results on text,biology and audio datasets shown that,compared with the state-of-the-art algorithm,the proposed algorithm can obtain better performance on 5 common criteria. 展开更多
关键词 multi-label classification hypothesis testing k nearest neighbor apriori algorithm label coupling
下载PDF
Coupled Attribute Similarity Learning on Categorical Data for Multi-Label Classification
3
作者 Zhenwu Wang longbing cao 《Journal of Beijing Institute of Technology》 EI CAS 2017年第3期404-410,共7页
In this paper a novel coupled attribute similarity learning method is proposed with the basis on the multi-label categorical data(CASonMLCD).The CASonMLCD method not only computes the correlations between different ... In this paper a novel coupled attribute similarity learning method is proposed with the basis on the multi-label categorical data(CASonMLCD).The CASonMLCD method not only computes the correlations between different attributes and multi-label sets using information gain,which can be regarded as the important degree of each attribute in the attribute learning method,but also further analyzes the intra-coupled and inter-coupled interactions between an attribute value pair for different attributes and multiple labels.The paper compared the CASonMLCD method with the OF distance and Jaccard similarity,which is based on the MLKNN algorithm according to 5common evaluation criteria.The experiment results demonstrated that the CASonMLCD method can mine the similarity relationship more accurately and comprehensively,it can obtain better performance than compared methods. 展开更多
关键词 COUPLED SIMILARITY MULTI-LABEL categorical data CORRELATIONS
下载PDF
Non-IID Recommender Systems: A Review and Framework of Recommendation Paradigm Shifting 被引量:1
4
作者 longbing cao 《工程(英文)》 2016年第2期212-224,229-243,共28页
下载PDF
Classification by ALH-Fast Algorithm
5
作者 Tao Yang Vojislav Kecman longbing cao 《Tsinghua Science and Technology》 SCIE EI CAS 2010年第3期275-280,共6页
The adaptive local hyperplane (ALH) algorithm is a very recently proposed classifier, which has been shown to perform better than many other benchmarking classifiers including support vector machine (SVM), K-neare... The adaptive local hyperplane (ALH) algorithm is a very recently proposed classifier, which has been shown to perform better than many other benchmarking classifiers including support vector machine (SVM), K-nearest neighbor (KNN), linear discriminant analysis (LDA), and K-local hyperplane distance nearest neighbor (HKNN) algorithms. Although the ALH algorithm is well formulated and despite the fact that it performs well in practice, its scalability over a very large data set is limited due to the online distance computations associated with all training instances. In this paper, a novel algorithm, called ALH-Fast and obtained by combining the classification tree algorithm and the ALH, is proposed to reduce the computational load of the ALH algorithm. The experiment results on two large data sets show that the ALH-Fast algorithm is both much faster and more accurate than the ALH algorithm. 展开更多
关键词 CLASSIFICATION adaptive local hyperplane (ALH) decision tree
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部