Recently,stretchable and wearable health monitoring equipment has greatly improved human’s daily life,which sets higher demands for portable power source in stretchability,sustainability,and biocompatibility.In this ...Recently,stretchable and wearable health monitoring equipment has greatly improved human’s daily life,which sets higher demands for portable power source in stretchability,sustainability,and biocompatibility.In this work,we proposed a stretchable triboelectric nanogenerator(TENG)based on stretchable poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)/porous carbon hybrid for oxyhemoglobin saturation(SpO2)monitoring.To combine advantages of carbon material for its high conductivity and organic electrode for its high stretchability,we spin-coated a solution of PEDOT:PSS/porous carbon onto a plasma-treated pre-stretched Ecoflex film to fabricate a stretchable electrode with rough surface.Due to its roughness and high potential difference with the dielectric material,the stretchable-electrode-based TENG exhibited better performance compared to the pristine TENG based on carbon or PEDOT:PSS material.The output voltage and current reached up to 51.5 V and 13.2μA as the carbon concentration increased.More importantly,the performance further increased under large strain(100%)which is suitable for wearable systems.Finally,the device demonstrated its application potential for powering a flexible blood oxygen monitor.This simple and cost-effective method can enhance the stretchability and stability of organic/inorganic electrode-based TENG,which paves the development of high-performance stretchable TENG.展开更多
基金the National Natural Science Foundation of China(Nos.11674185,61875015,and 61971049)the Natural Science Foundation of Fujian(Nos.2020J01857 and 2019J01764)+4 种基金the Fuzhou City Science and Technology Cooperation Project(Nos.2020-GX-5 and 2020-S-29)Beijing Natural Science Foundation(No.JQ20038)the Key Scientific Research Project of Beijing Municipal Commission of Education(No.KZ202010015024)the Research and Development Program of Beijing Institute of Graphic Communication(No.Ec202006)the Beijing Municipal Science and Technology Commission(No.Z181100004418004).
文摘Recently,stretchable and wearable health monitoring equipment has greatly improved human’s daily life,which sets higher demands for portable power source in stretchability,sustainability,and biocompatibility.In this work,we proposed a stretchable triboelectric nanogenerator(TENG)based on stretchable poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)/porous carbon hybrid for oxyhemoglobin saturation(SpO2)monitoring.To combine advantages of carbon material for its high conductivity and organic electrode for its high stretchability,we spin-coated a solution of PEDOT:PSS/porous carbon onto a plasma-treated pre-stretched Ecoflex film to fabricate a stretchable electrode with rough surface.Due to its roughness and high potential difference with the dielectric material,the stretchable-electrode-based TENG exhibited better performance compared to the pristine TENG based on carbon or PEDOT:PSS material.The output voltage and current reached up to 51.5 V and 13.2μA as the carbon concentration increased.More importantly,the performance further increased under large strain(100%)which is suitable for wearable systems.Finally,the device demonstrated its application potential for powering a flexible blood oxygen monitor.This simple and cost-effective method can enhance the stretchability and stability of organic/inorganic electrode-based TENG,which paves the development of high-performance stretchable TENG.