期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Perovskite/Silicon Tandem Solar Cells: From Detailed Balance Limit Calculations to Photon Management 被引量:1
1
作者 Mohammad I.Hossain Wayesh Qarony +3 位作者 Sainan Ma longhui zeng Dietmar Knipp Yuen Hong Tsang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期49-72,共24页
Energy conversion efficiency losses and limits of perovskite/silicon tandem solar cells are investigated by detailed balance calculations and photon management.An extended Shockley-Queisser model is used to identify f... Energy conversion efficiency losses and limits of perovskite/silicon tandem solar cells are investigated by detailed balance calculations and photon management.An extended Shockley-Queisser model is used to identify fundamental loss mechanisms and link the losses to the optics of solar cells.Photon management is used to minimize losses and maximize the energy conversion efficiency.The influence of photon management on the solar cell parameters of a perovskite single-junction solar cell and a perovskite/silicon solar cell is discussed in greater details.An optimized solar cell design of a perovskite/silicon tandem solar cell is presented,which allows for the realization of solar cells with energy conversion efficiencies exceeding 32%. 展开更多
关键词 PEROVSKITE SOLAR CELL Tandem SOLAR CELL Thermodynamic PHOTON MANAGEMENT Detailed balance LIMIT
下载PDF
In-situ fabrication of on-chip 1T'-MoTe_(2)/Ge Schottky junction photodetector for self-powered broadband infrared imaging and position sensing
2
作者 Menglei Zhu Kunxuan Liu +9 位作者 Di Wu Yunrui Jiang Xue Li Pei Lin Zhifeng Shi Xinjian Li Ran Ding Yalun Tang Xuechao Yu longhui zeng 《Nano Research》 SCIE EI CSCD 2024年第6期5587-5594,共8页
High-sensitivity room-temperature multi-dimensional infrared(IR)detection is crucial for military and civilian purposes.Recently,the gapless electronic structures and unique optoelectrical properties have made the two... High-sensitivity room-temperature multi-dimensional infrared(IR)detection is crucial for military and civilian purposes.Recently,the gapless electronic structures and unique optoelectrical properties have made the two-dimensional(2D)topological semimetals promising candidates for the realization of multifunctional optoelectronic devices.Here,we demonstrated the in-situ construction of high-performance 1T’-MoTe_(2)/Ge Schottky junction device by inserting an ultrathin AlOx passivation layer.The good detection performance with an ultra-broadband detection wavelength range of up to 10.6 micron,an ultrafast response time of~160 ns,and a large specific detectivity of over 109 Jones in mid-infrared(MIR)range surpasses that of most 2D materials-based IR sensors,approaching the performance of commercial IR photodiodes.The on-chip integrated device arrays with 64 functional detectors feature high-resolution imaging capability at room temperature.All these outstanding detection features have enabled the demonstration of position-sensitive detection applications.It demonstrates an exceptional position sensitivity of 14.9 mV/mm,an outstanding nonlinearity of 6.44%,and commendable trajectory tracking and optoelectronic demodulation capabilities.This study not only offers a promising route towards room-temperature MIR optoelectronic applications,but also demonstrates a great potential for application in optical sensing systems. 展开更多
关键词 MoTe_(2) broadband photodetection Schottky junction IMAGING position sensitive detector
原文传递
Phase-controlled van der Waals growth of wafer-scale 2D MoTe_(2) layers for integrated high-sensitivity broadband infrared photodetection 被引量:3
3
作者 Di Wu Chenguang Guo +8 位作者 longhui zeng Xiaoyan Ren Zhifeng Shi Long Wen Qin Chen Meng Zhang Xin Jian Li Chong-Xin Shan Jiansheng Jie 《Light(Science & Applications)》 SCIE EI CAS CSCD 2023年第1期77-88,共12页
Being capable of sensing broadband infrared(IR)light is vitally important for wide-ranging applications from fundamental science to industrial purposes.Two-dimensional(2D)topological semimetals are being extensively e... Being capable of sensing broadband infrared(IR)light is vitally important for wide-ranging applications from fundamental science to industrial purposes.Two-dimensional(2D)topological semimetals are being extensively explored for broadband IR detection due to their gapless electronic structure and the linear energy dispersion relation.However,the low charge separation efficiency,high noise level,and on-chip integration difficulty of these semimetals significantly hinder their further technological applications.Here,we demonstrate a facile thermal-assisted tellurization route for the van der Waals(vdW)growth of wafer-scale phase-controlled 2D MoTe_(2)layers.Importantly,the type-ⅡWeyl semimetal 1T'-MoTe_(2)features a unique orthorhombic lattice structure with a broken inversion symmetry,which ensures efficient carrier transportation and thus reduces the carrier recombination.This characteristic is a key merit for the well-designed 1T'-MoTe_(2)/Si vertical Schottky junction photodetector to achieve excellent performance with an ultrabroadband detection range of up to 10.6μm and a large room temperature specific detectivity of over 108 Jones in the mid-infrared(MIR)range.Moreover,the large-area synthesis of 2D MoTe_(2)layers enables the demonstration of high-resolution uncooled MIR imaging capability by using an integrated device array.This work provides a new approach to assembling uncooled IR photodetectors based on 2D materials. 展开更多
关键词 hinder enable DIFFICULTY
原文传递
Light trapping enhanced broadband photodetection and imaging based on MoSe_(2)/pyramid Si vdW heterojunction 被引量:1
4
作者 Shaoqin Pan Shuo-En Wu +8 位作者 Jinjin Hei Zhiwen Zhou longhui zeng Yakun Xing Pei Lin Zhifeng Shi Yongtao Tian Xinjian Li Di Wu 《Nano Research》 SCIE EI CSCD 2023年第7期10552-10558,共7页
Two-dimensional(2D)layered materials have been considered promising candidates for next-generation optoelectronics.However,the performance of 2D photodetectors still has much room for improvement due to weak light abs... Two-dimensional(2D)layered materials have been considered promising candidates for next-generation optoelectronics.However,the performance of 2D photodetectors still has much room for improvement due to weak light absorption of planar 2D materials and lack of high-quality heterojunction preparation technology.Notably,2D materials integrating with mature bulk semiconductors are a promising pathway to overcome this limitation and promote the practical application on optoelectronics.In this work,we present the patterned assembly of MoSe_(2)/pyramid Si mixed-dimensional van der Waals(vdW)heterojunction arrays for broadband photodetection and imaging.Benefited from the light trapping effect induced enhanced optical absorption and high-quality vdW heterojunction,the photodetector demonstrates a wide spectral response range from 265 to 1550 nm,large responsivity up to 0.67 A·W^(-1),high specific detectivity of 1.84×10^(13)Jones,and ultrafast response time of 0.34/5.6μs at 0 V.Moreover,the photodetector array exhibits outstanding broadband image sensing capability.This study offers a novel development route for high-performance and broadband photodetector array by MoSe_(2)/pyramid Si mixed-dimensional heterojunction. 展开更多
关键词 two-dimensional(2D)MoSe_(2)layers light trapping van der Waals(vdW)heterojunction broadband photodetector selfpowered imaging
原文传递
Van der Waals integration inch-scale 2D MoSe_(2) layers on Si for highly-sensitive broadband photodetection and imaging
5
作者 Yupiao Wu Shuo-En Wu +7 位作者 Jinjin Hei longhui zeng Pei Lin Zhifeng Shi Qingming Chen Xinjian Li Xuechao Yu Di Wu 《Nano Research》 SCIE EI CSCD 2023年第8期11422-11429,共8页
As one of the most promising materials for two-dimensional transition metal chalcogenides(2D TMDs),molybdenum diselenide(MoSe_(2))has great potential in photodetectors due to its excellent properties like tunable band... As one of the most promising materials for two-dimensional transition metal chalcogenides(2D TMDs),molybdenum diselenide(MoSe_(2))has great potential in photodetectors due to its excellent properties like tunable bandgap,high carrier mobility,and excellent air stability.Although 2D MoSe_(2)-based photodetectors have been reported to exhibit admired performance,the large-area 2D MoSe_(2)layers are difficult to be achieved via conventional synthesis methods,which severely impedes its future applications.Here,we present the controllable growth of large-area 2D MoSe_(2)layers over 3.5-inch with excellent homogeneity by a simple post-selenization route.Further,a high-quality n-MoSe_(2)/p-Si van der Waals(vdW)heterojunction device is in-situ fabricated by directly growing 2D n-MoSe_(2)layers on the patterned p-Si substrate,which shows a self-driven broadband photoresponse ranging from ultraviolet to mid-wave infrared with an impressive responsivity of 720.5 mA·W^(−1),a high specific detectivity of 10^(13) Jones,and a fast response time to follow nanosecond pulsed optical signal.In addition,thanks to the inch-level 2D MoSe_(2)layers,a 4×4 integrated heterojunction device array is achieved,which has demonstrated good uniformity and satisfying imaging capability.The large-area 2D MoSe_(2)layer and its heterojunction device array have great promise for high-performance photodetection and imaging applications in integrated optoelectronic systems. 展开更多
关键词 molybdenum diselenide large-area synthesis broadband photodetector integrated device array van der Waals(vdW)heterojunction
原文传递
In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity 被引量:13
6
作者 Ranran Zhuo longhui zeng +7 位作者 Huiyu Yuan Di Wu Yuange Wang Zhifeng Shi Tingting Xu Yongtao Tian Xinjian Li Yuen Hong Tsang 《Nano Research》 SCIE EI CAS CSCD 2019年第1期183-189,共7页
The research of ultraviolet photodetectors(UV PDs)have been attracting extensive attention,due to their important applications in many areas.In this study,PtSe2/GaN heterojunction is in-situ fabricated by synthesis of... The research of ultraviolet photodetectors(UV PDs)have been attracting extensive attention,due to their important applications in many areas.In this study,PtSe2/GaN heterojunction is in-situ fabricated by synthesis of large-area vertically standing two-dimensional(2D)PtSe2 film on n-GaN substrate.The PtSe2/GaN heterojunction device demonstrates excellent photoresponse properties under illumination by deep UV light of 265 nm at zero bias voltage.Further analysis reveals that a high responsivity of 193 mA·W^-1,an ultrahigh specific detectivity of 3.8 × 10^14 Jones,linear dynamic range of 155d B and current on/off ratio of^10^8,as well as fast response speeds of 45/102μs were obtained at zero bias voltage.Moreover,this device response quickly to the pulse laser of 266 nm with a rise time of 172 ns.Such high-performanee PtSe2/GaN heteroj u nction UV PD demonstrated in this work is far superior to previously reported results,suggesting that it has great potential for deep UV detection. 展开更多
关键词 PtSe2 HETEROJUNCTION deep ULTRAVIOLET PHOTODETECTORS SELF-POWERED
原文传递
Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe_(2)/β-Ga_(2)O_(3)2D/3D Schottky junction with ultrafast speed 被引量:6
7
作者 Di Wu Zhihui Zhao +7 位作者 Wei Lu Lukas Rogée longhui zeng Pei Lin Zhifeng Shi Yongtao Tian Xinjian Li Yuen Hong Tsang 《Nano Research》 SCIE EI CAS CSCD 2021年第6期1973-1979,共7页
There is an emerging need for high-sensitivity solar-blind deep ultraviolet(DUV)photodetectors with an ultra-fast response speed.Although nanoscale devices based on Ga_(2)O_(3)nanostructures have been developed,their ... There is an emerging need for high-sensitivity solar-blind deep ultraviolet(DUV)photodetectors with an ultra-fast response speed.Although nanoscale devices based on Ga_(2)O_(3)nanostructures have been developed,their practical applications are greatly limited by their slow response speed as well as low specific detectivity.Here,the successful fabrication of two-/three-dimensional(2D/3D)graphene(Gr)/PtSe2/β-Ga_(2)O_(3)Schottky junction devices for high-sensitivity solar-blind DUV photodetectors is demonstrated.Benefitting from the high-quality 2D/3D Schottky junction,the vertically stacked structure,and the superior-quality transparent graphene electrode for effective carrier collection,the photodetector is highly sensitive to DUV light illumination and achieves a high responsivity of 76.2 mA/W,a large on/off current ratio of~105,along with an ultra-high ultraviolet(UV)/visible rejection ratio of 1.8×104.More importantly,it has an ultra-fast response time of 12µs and a remarkable specific detectivity of~1013 Jones.Finally,an excellent DUV imaging capability has been identified based on the Gr/PtSe2/β-Ga_(2)O_(3)Schottky junction photodetector,demonstrating its great potential application in DUV imaging systems. 展开更多
关键词 platinum diselenide β-Ga_(2)O_(3) solar-blind photodetectors deep ultraviolet imaging
原文传递
Vertically standing PtSe_2 film: a saturable absorber for a passively mode-locked Nd:LuVO_4 laser 被引量:8
8
作者 LILI TAO XIAOWEN HUANG +7 位作者 JUNSHAN HE YAJUN LOU longhui zeng YONGHUI LI HUI LONG JINGBO LI LING ZHANG YUEN HONG TSANG 《Photonics Research》 SCIE EI 2018年第7期750-755,共6页
The novel vertically standing Pt Se2 film on transparent quartz was prepared by selenization of platinum film deposited by the magnetron sputtering method, and an Nd:Lu VO4 passively mode-locked solid-state laser was ... The novel vertically standing Pt Se2 film on transparent quartz was prepared by selenization of platinum film deposited by the magnetron sputtering method, and an Nd:Lu VO4 passively mode-locked solid-state laser was realized by using the fabricated Pt Se2 film as a saturable absorber. The X-ray diffraction pattern and Raman spectrum of the film indicate its good crystallinity with a layered structure. The thickness of Pt Se2 film is measured to be 24 nm according to the cross-section height profile of the atomic force microscope image. Highresolution transmission electron microscopy images clearly demonstrate its vertically standing structure with an interlayer distance of 0.54 nm along the c-axis direction. The modulation depth(ΔT) and saturation fluence(Φs)of Pt Se2 film are measured to be 12.6% and 17.1 μJ∕cm2, respectively. The obtained mode-locked laser spectrum has a central wavelength of 1066.573 nm, with a 3 d B bandwidth of 0.106 nm. The transform limited pulse width of the mode-locked laser was calculated to be 15.8 ps. A maximum average output power of 180 m W with a working repetition rate of 61.3 MHz is obtained. To the best of our knowledge, this is the first report of the generation of ultrafast mode-locked laser pulses by using layered Pt Se2 as a saturable absorber. 展开更多
关键词 磁控溅射法 通信技术 理论研究 发展现状
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部