High ultraviolet(UV)stability and low dark current(Idark)are necessary for high-quality perovskite photodetectors(PDs).TiO^(2)thin film is known as effective electron-transport-layer(ETL)for perovskite devices.However...High ultraviolet(UV)stability and low dark current(Idark)are necessary for high-quality perovskite photodetectors(PDs).TiO^(2)thin film is known as effective electron-transport-layer(ETL)for perovskite devices.However,common spin-coated TiO^(2)ETLs endow many surface defects and have strong UV photocatalytic effect to decompose perovskite materials,resulting in inferior stability of devices.In this work,TiO^(2)bilayer film(Bi-TiO^(2))has been fabricated by combining spin-coating and atomic-layer-deposition process and its positive effects on UV stability and Idarkof Cs2 AgBiBr6-based PDs have been revealed for the first time.It is demonstrated that Bi-TiO^(2)possesses fewer surface defects and smoother morphology with type II band alignment,which is beneficial to suppress photocatalytic activity of TiO^(2)and reduce carrier recombination at the interface.After accelerated strong UV aging treatment,the PD with Bi-TiO^(2)maintains excellent performance,whereas the PD with spin-coated TiO^(2)film dramatically deteriorate with on-off ratio drops from~102 to~2.Besides,the Idarkof PD remarkably decreases from~10^(-8) A to~10^(-10) A after bilayer optimization.Furthermore,we have integrated the corresponding PDs into a self-built imaging system adopting diffuse reflection mode.This work suggests a feasible approach to fabricate TiO^(2)/Cs2 AgBiBr6-based PDs with remarkable UV tolerance for imaging applications.展开更多
基金financial supports from National Natural Science Foundation of China(51772135)the Ministry of Education of China(6141A02022516)+4 种基金the Fundamental Research Funds for the Central Universities(11619103)the China Postdoctoral Science Foundation(2019M663376)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2017A020215135 and2018A030310659)Guangdong Basic and Applied Basic Research Foundation(2020A1515011377)the Science and Technology Program of Guangzhou,China(Grant No.201804010432)。
文摘High ultraviolet(UV)stability and low dark current(Idark)are necessary for high-quality perovskite photodetectors(PDs).TiO^(2)thin film is known as effective electron-transport-layer(ETL)for perovskite devices.However,common spin-coated TiO^(2)ETLs endow many surface defects and have strong UV photocatalytic effect to decompose perovskite materials,resulting in inferior stability of devices.In this work,TiO^(2)bilayer film(Bi-TiO^(2))has been fabricated by combining spin-coating and atomic-layer-deposition process and its positive effects on UV stability and Idarkof Cs2 AgBiBr6-based PDs have been revealed for the first time.It is demonstrated that Bi-TiO^(2)possesses fewer surface defects and smoother morphology with type II band alignment,which is beneficial to suppress photocatalytic activity of TiO^(2)and reduce carrier recombination at the interface.After accelerated strong UV aging treatment,the PD with Bi-TiO^(2)maintains excellent performance,whereas the PD with spin-coated TiO^(2)film dramatically deteriorate with on-off ratio drops from~102 to~2.Besides,the Idarkof PD remarkably decreases from~10^(-8) A to~10^(-10) A after bilayer optimization.Furthermore,we have integrated the corresponding PDs into a self-built imaging system adopting diffuse reflection mode.This work suggests a feasible approach to fabricate TiO^(2)/Cs2 AgBiBr6-based PDs with remarkable UV tolerance for imaging applications.