期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Controlled acceleration of GeV electron beams in an all-optical plasma waveguide 被引量:3
1
作者 Kosta Oubrerie Adrien Leblanc +8 位作者 Olena Kononenko Ronan Lahaye Igor A.Andriyash Julien Gautier Jean-Philippe Goddet lorenzo martelli Amar TafziKim Ta Phuoc Slava Smartsev Cédric Thaury 《Light(Science & Applications)》 SCIE EI CAS CSCD 2022年第7期1535-1541,共7页
Laser-plasma accelerators(LPAs)produce electric fields of the order of 100 GV m-1,more than 1000 times larger than those produced by radio-frequency accelerators.These uniquely strong fields make LPAs a promising path... Laser-plasma accelerators(LPAs)produce electric fields of the order of 100 GV m-1,more than 1000 times larger than those produced by radio-frequency accelerators.These uniquely strong fields make LPAs a promising path to generate electron beams beyond the TeV,an important goal in high-energy physics.Yet,large electric fields are of little benefit if they are not maintained over a long distance.It is therefore of the utmost importance to guide the ultra-intense laser pulse that drives the accelerator.Reaching very high energies is equally useless if the properties of the electron beam change completely from shot to shot,due to the intrinsic lack of stability of the injection process.State-of-the-art laser-plasma accelerators can already address guiding and control challenges separately by tweaking the plasma structures.However,the production of beams that are simultaneously high quality and high energy has yet to be demonstrated.This paper presents a novel experiment,coupling laser-plasma waveguides and controlled injection techniques,facilitating the reliable and efficient acceleration of high-quality electron beams up to 1.1 GeV,from a 50 TW-class laser. 展开更多
关键词 process. ACCELERATION uniquely
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部