Adaptations to extreme environmental conditions are intriguing. Animal skin, which directly interacts with external environment, plays diverse and important roles in adaptive evolution. The thin and bare skin of amphi...Adaptations to extreme environmental conditions are intriguing. Animal skin, which directly interacts with external environment, plays diverse and important roles in adaptive evolution. The thin and bare skin of amphibians is sensitive to external environmental conditions and, thus, it facilitates investigations into adaptations for living in extreme environments. Herein, we compare the structures of skin in four anuran species living at elevations ranging from 100 m to 4500 m to assess phenotypic innovations in the skin of Nanorana parkeri, which lives at extremely high elevations. Analyses reveal similar basic skin structures, but N. parkeri differs from the other species by having more epidermal capillaries and granular glands, which correlate highly with responses to hypoxia and/or ultraviolet(UV) radiation. Further intraspecific comparisons from frogs taken at ~4500 m and ~2900 m reveal that all of the changes are fixed. Changes occurring only in the higher elevation population, such as possessing more skin pigments, may represent local adaptations to coldness and/or UV radiation. These results provide a morphological basis for understanding further the molecular adaptations of these frogs.展开更多
基金supported by the National Natural Science Foundation of China Grant (31671326 and 31871275)supported by the Youth Innovation Promotion Association, Chinese Academy of Science, China
文摘Adaptations to extreme environmental conditions are intriguing. Animal skin, which directly interacts with external environment, plays diverse and important roles in adaptive evolution. The thin and bare skin of amphibians is sensitive to external environmental conditions and, thus, it facilitates investigations into adaptations for living in extreme environments. Herein, we compare the structures of skin in four anuran species living at elevations ranging from 100 m to 4500 m to assess phenotypic innovations in the skin of Nanorana parkeri, which lives at extremely high elevations. Analyses reveal similar basic skin structures, but N. parkeri differs from the other species by having more epidermal capillaries and granular glands, which correlate highly with responses to hypoxia and/or ultraviolet(UV) radiation. Further intraspecific comparisons from frogs taken at ~4500 m and ~2900 m reveal that all of the changes are fixed. Changes occurring only in the higher elevation population, such as possessing more skin pigments, may represent local adaptations to coldness and/or UV radiation. These results provide a morphological basis for understanding further the molecular adaptations of these frogs.