We report laser frequency stabilization with modulation transfer spectroscopy(MTS) on 85 Rb atoms. With both PZT(piezo-electric transducer) slow-loop feedback and current fastloop feedback to the laser head, we ge...We report laser frequency stabilization with modulation transfer spectroscopy(MTS) on 85 Rb atoms. With both PZT(piezo-electric transducer) slow-loop feedback and current fastloop feedback to the laser head, we get a linewidth narrowing less than 5 kHz simultaneously. Laser injection to a laser diode and frequency beating with another polarization spectroscopy based stabilization setup are also employed to check the narrow linewidth property. With the help of the technique, a linewidth around k Hz-level laser is obtained and pave the way for the locking of the lattice laser of ytterbium clock with transfer cavity technique. The setup can be used as a frequency reference for precise frequency control of atomic clock system.展开更多
基金Supported by the National Natural Science Foundation of China(61227805,11574352,91536104,91636215)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB21030700)
文摘We report laser frequency stabilization with modulation transfer spectroscopy(MTS) on 85 Rb atoms. With both PZT(piezo-electric transducer) slow-loop feedback and current fastloop feedback to the laser head, we get a linewidth narrowing less than 5 kHz simultaneously. Laser injection to a laser diode and frequency beating with another polarization spectroscopy based stabilization setup are also employed to check the narrow linewidth property. With the help of the technique, a linewidth around k Hz-level laser is obtained and pave the way for the locking of the lattice laser of ytterbium clock with transfer cavity technique. The setup can be used as a frequency reference for precise frequency control of atomic clock system.