Deep learning technologies are increasingly used in the fi eld of geophysics,and a variety of algorithms based on shallow convolutional neural networks are more widely used in fault recognition,but these methods are u...Deep learning technologies are increasingly used in the fi eld of geophysics,and a variety of algorithms based on shallow convolutional neural networks are more widely used in fault recognition,but these methods are usually not able to accurately identify complex faults.In this study,using the advantage of deep residual networks to capture strong learning features,we introduce residual blocks to replace all convolutional layers of the three-dimensional(3D)UNet to build a new 3D Res-UNet and select appropriate parameters through experiments to train a large amount of synthesized seismic data.After the training is completed,we introduce the mechanism of knowledge distillation.First,we treat the 3D Res-UNet as a teacher network and then train the 3D Res-UNet as a student network;in this process,the teacher network is in evaluation mode.Finally,we calculate the mixed loss function by combining the teacher model and student network to learn more fault information,improve the performance of the network,and optimize the fault recognition eff ect.The quantitative evaluation result of the synthetic model test proves that the 3D Res-UNet can considerably improve the accuracy of fault recognition from 0.956 to 0.993 after knowledge distillation,and the eff ectiveness and feasibility of our method can be verifi ed based on the application of actual seismic data.展开更多
基金supported by the National Natural Science Foundation of China(No.42072169)。
文摘Deep learning technologies are increasingly used in the fi eld of geophysics,and a variety of algorithms based on shallow convolutional neural networks are more widely used in fault recognition,but these methods are usually not able to accurately identify complex faults.In this study,using the advantage of deep residual networks to capture strong learning features,we introduce residual blocks to replace all convolutional layers of the three-dimensional(3D)UNet to build a new 3D Res-UNet and select appropriate parameters through experiments to train a large amount of synthesized seismic data.After the training is completed,we introduce the mechanism of knowledge distillation.First,we treat the 3D Res-UNet as a teacher network and then train the 3D Res-UNet as a student network;in this process,the teacher network is in evaluation mode.Finally,we calculate the mixed loss function by combining the teacher model and student network to learn more fault information,improve the performance of the network,and optimize the fault recognition eff ect.The quantitative evaluation result of the synthetic model test proves that the 3D Res-UNet can considerably improve the accuracy of fault recognition from 0.956 to 0.993 after knowledge distillation,and the eff ectiveness and feasibility of our method can be verifi ed based on the application of actual seismic data.