77 cases of neurosis were treated with intelligent(computerized)elec-troacupuncture(IEA)and common electroacupuncture(CEA)at two different wave forms and fre-quencies.The results showed that the markedly effective rat...77 cases of neurosis were treated with intelligent(computerized)elec-troacupuncture(IEA)and common electroacupuncture(CEA)at two different wave forms and fre-quencies.The results showed that the markedly effective rates of IEA and CEA were respectively75% and 60% without a statistically significant difference.For different subtypes of neurosis,thetherapeutic effects of IEC in the treatment 6f neurasthenia and depressive neurosis were superior toand in the treatment of anxiety was inferior to those of CEA.For different syndromes,the curativeeffects of IEA on somatic symptom,depression and asthenic symptom were.superior to and on anxietyand sleep-disorder were not as good as those of CEA.展开更多
Soil drying-rewetting(DRW) events affect nutrient transformation and microbial community composition; however, little is known about the influence of drying intensity during the DRW events. Therefore, we analyzed soil...Soil drying-rewetting(DRW) events affect nutrient transformation and microbial community composition; however, little is known about the influence of drying intensity during the DRW events. Therefore, we analyzed soil nutrient composition and microbial communities with exposure to various drying intensities during an experimental drying-rewetting event, using a silt loam from a grassland of northern China, where the semi-arid climate exposes soils to a wide range of moisture conditions, and grasslands account for over 40% of the nation's land area. We also conducted a sterilization experiment to examine the contribution of soil microbes to nutrient pulses. Soil drying-rewetting decreased carbon(C) mineralization by 9%–27%. Both monosaccharide and mineral nitrogen(N) contents increased with higher drying intensities(drying to ≤ 10% gravimetric water content), with the increases being 204% and 110% with the highest drying intensity(drying to 2% gravimetric water content), respectively, whereas labile phosphorus(P)only increased(by 105%) with the highest drying intensity. Moreover, levels of microbial biomass C and N and dissolved organic N decreased with increasing drying intensity and were correlated with increases in dissolved organic C and mineral N, respectively,whereas the increases in labile P were not consistent with reductions in microbial biomass P. The sterilization experiment results indicated that microbes were primarily responsible for the C and N pulses, whereas non-microbial factors were the main contributors to the labile P pulses. Phospholipid fatty acid analysis indicated that soil microbes were highly resistant to drying-rewetting events and that drought-resistant groups were probably responsible for nutrient transformation. Therefore, the present study demonstrated that moderate soil drying during drying-rewetting events could improve the mineralization of N, but not P, and that different mechanisms were responsible for the C, N, and P pulses observed during drying-rewetting events.展开更多
文摘77 cases of neurosis were treated with intelligent(computerized)elec-troacupuncture(IEA)and common electroacupuncture(CEA)at two different wave forms and fre-quencies.The results showed that the markedly effective rates of IEA and CEA were respectively75% and 60% without a statistically significant difference.For different subtypes of neurosis,thetherapeutic effects of IEC in the treatment 6f neurasthenia and depressive neurosis were superior toand in the treatment of anxiety was inferior to those of CEA.For different syndromes,the curativeeffects of IEA on somatic symptom,depression and asthenic symptom were.superior to and on anxietyand sleep-disorder were not as good as those of CEA.
基金supported by the Scientific and Technological Innovation Fund of Shanxi Agricultural University,China(No.2017YJ17)the Outstanding Doctor Funding Award of Shanxi Province,China(No.SXYBKY201720)+2 种基金the National Basic Research Program(973 Program)of China(No.2013CB127403)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB15020402)the National Natural Science Foundation of China(No.41571130061)
文摘Soil drying-rewetting(DRW) events affect nutrient transformation and microbial community composition; however, little is known about the influence of drying intensity during the DRW events. Therefore, we analyzed soil nutrient composition and microbial communities with exposure to various drying intensities during an experimental drying-rewetting event, using a silt loam from a grassland of northern China, where the semi-arid climate exposes soils to a wide range of moisture conditions, and grasslands account for over 40% of the nation's land area. We also conducted a sterilization experiment to examine the contribution of soil microbes to nutrient pulses. Soil drying-rewetting decreased carbon(C) mineralization by 9%–27%. Both monosaccharide and mineral nitrogen(N) contents increased with higher drying intensities(drying to ≤ 10% gravimetric water content), with the increases being 204% and 110% with the highest drying intensity(drying to 2% gravimetric water content), respectively, whereas labile phosphorus(P)only increased(by 105%) with the highest drying intensity. Moreover, levels of microbial biomass C and N and dissolved organic N decreased with increasing drying intensity and were correlated with increases in dissolved organic C and mineral N, respectively,whereas the increases in labile P were not consistent with reductions in microbial biomass P. The sterilization experiment results indicated that microbes were primarily responsible for the C and N pulses, whereas non-microbial factors were the main contributors to the labile P pulses. Phospholipid fatty acid analysis indicated that soil microbes were highly resistant to drying-rewetting events and that drought-resistant groups were probably responsible for nutrient transformation. Therefore, the present study demonstrated that moderate soil drying during drying-rewetting events could improve the mineralization of N, but not P, and that different mechanisms were responsible for the C, N, and P pulses observed during drying-rewetting events.