铅铋共晶(lead-bismutheutectic,LBE)合金具有化学活性低、热特性杰出、耐辐照等优异特性,在核领域具有广泛的应用前景,是第4代核能系统铅冷快堆(lead-cooled fast reactor,LFR)冷却剂的首选材料。然而,高温、高流速、高密度的液态LBE...铅铋共晶(lead-bismutheutectic,LBE)合金具有化学活性低、热特性杰出、耐辐照等优异特性,在核领域具有广泛的应用前景,是第4代核能系统铅冷快堆(lead-cooled fast reactor,LFR)冷却剂的首选材料。然而,高温、高流速、高密度的液态LBE会对核电材料造成严重腐蚀,威胁其服役安全。因此,全面认识与分析应用LBE所面临的挑战,对于解决LBE与结构材料相容性的关键科学和实际工程问题,以及核能的可持续发展具有重要意义。简介了LBE冷却剂的特点,系统地论述了近年来关于LBE腐蚀机理、影响因素的研究现状,针对目前的控制溶解氧气浓度、结构材料设计和腐蚀防护涂层这3种主要解决方案的基本原理、防护机制及国内外最新研究进展进行了较为全面地分析。最后,总结了目前研究中存在的主要问题与不足,并展望了未来发展前景。展开更多
The spatial diversity of distributed network demands the individual filter to accommodate the topology of interference environment. In this paper, a type of distributed adaptive beamformer is proposed to mitigate inte...The spatial diversity of distributed network demands the individual filter to accommodate the topology of interference environment. In this paper, a type of distributed adaptive beamformer is proposed to mitigate interference over coordinated antenna arrays network. The proposed approach is formulated as generalized sidelobe canceller (GSC) structure to facilitate the convex combination of neighboring nodes' weights, and then it is solved by unconstrained least mean square (LMS) algorithm due to simplicity. Numerical results show that the robustness and convergence rate of antenna arrays network can be significantly improved in strong interference scenario. And they also clearly illustrate that mixing vector is optimized adaptively and adjusted according to the spatial diversity of the distributed nodes which are placed in different power of received signals to interference ratio (SIR) environments.展开更多
文摘铅铋共晶(lead-bismutheutectic,LBE)合金具有化学活性低、热特性杰出、耐辐照等优异特性,在核领域具有广泛的应用前景,是第4代核能系统铅冷快堆(lead-cooled fast reactor,LFR)冷却剂的首选材料。然而,高温、高流速、高密度的液态LBE会对核电材料造成严重腐蚀,威胁其服役安全。因此,全面认识与分析应用LBE所面临的挑战,对于解决LBE与结构材料相容性的关键科学和实际工程问题,以及核能的可持续发展具有重要意义。简介了LBE冷却剂的特点,系统地论述了近年来关于LBE腐蚀机理、影响因素的研究现状,针对目前的控制溶解氧气浓度、结构材料设计和腐蚀防护涂层这3种主要解决方案的基本原理、防护机制及国内外最新研究进展进行了较为全面地分析。最后,总结了目前研究中存在的主要问题与不足,并展望了未来发展前景。
基金supported by National Basic Research Program of China (No. 2010CB731903)
文摘The spatial diversity of distributed network demands the individual filter to accommodate the topology of interference environment. In this paper, a type of distributed adaptive beamformer is proposed to mitigate interference over coordinated antenna arrays network. The proposed approach is formulated as generalized sidelobe canceller (GSC) structure to facilitate the convex combination of neighboring nodes' weights, and then it is solved by unconstrained least mean square (LMS) algorithm due to simplicity. Numerical results show that the robustness and convergence rate of antenna arrays network can be significantly improved in strong interference scenario. And they also clearly illustrate that mixing vector is optimized adaptively and adjusted according to the spatial diversity of the distributed nodes which are placed in different power of received signals to interference ratio (SIR) environments.