期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
川西拗陷中段蓬莱镇组储层发育特征及主控因素 被引量:6
1
作者 杨永剑 张克银 +3 位作者 吕正祥 侯明才 叶素娟 黎青 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第5期521-528,共8页
研究川西拗陷中段上侏罗统蓬莱镇组储层发育的主控因素,寻找优质储层发育区。通过对储层微观特征分析,结合钻井相关的测试分析资料,研究结果表明,川西拗陷中段蓬莱镇组储层总体上属于中-低孔、低渗型储层,且平面上差异较大,位于研究区... 研究川西拗陷中段上侏罗统蓬莱镇组储层发育的主控因素,寻找优质储层发育区。通过对储层微观特征分析,结合钻井相关的测试分析资料,研究结果表明,川西拗陷中段蓬莱镇组储层总体上属于中-低孔、低渗型储层,且平面上差异较大,位于研究区中部、东部地区相对远物源富长石类储层物性总体较好。最有利储层发育的沉积环境为分流河道,次为河口坝。压实作用和胶结作用是造成储层中-低孔、低渗最主要的原因;而溶蚀作用是最重要的建设性成岩作用,且胶结物的溶蚀强度大于碎屑颗粒的溶蚀强度。此外,少量的构造破裂缝可以在一定程度上改善储层渗滤能力,同时也为溶蚀作用提供了良好的通道。 展开更多
关键词 四川盆地 蓬莱镇组 储层特征 控制因素
下载PDF
Petrophysical and capillary pressure properties of the upper Triassic Xujiahe Formation tight gas sandstones in western Sichuan,China 被引量:4
2
作者 Ye Sujuan lu zhengxiang Li Rong 《Petroleum Science》 SCIE CAS CSCD 2011年第1期34-42,共9页
The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) fo... The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) for the T_3x^4 and T_3x^2 sandstones,respectively),extremely low permeability(av. 0.060 mD and 0.058 mD for the T_3x^4 and T_3x^2 sandstones,respectively),strong heterogeneity,micronano pore throat,and poor pore throat sorting.As a result of complex pore structure and the occurrence of fractures,weak correlations exist between petrophysical properties and pore throat size,demonstrating that porosity or pore throat size alone does not serve as a good permeability predictor.Much improved correlations can be obtained between permeability and porosity when pore throat radii are incorporated. Correlations between porosity,permeability,and pore throat radii corresponding to different saturations of mercury were established,showing that the pore throat radius at 20%mercury saturation(R_(20)) is the best permeability predictor.Multivariate regression analysis and artificial neural network(ANN) methods were used to establish permeability prediction models and the unique characteristics of neural networks enable them to be more successful in predicting permeability than the multivariate regression model.In addition, four petrophysical rock types can be identified based on the distributions of R_(20),each exhibiting distinct petrophysical properties and corresponding to different flow units. 展开更多
关键词 Western Sichuan upper Triassic Xujiahe Formation tight sandstones PERMEABILITY POROSITY pore throat radius regression analysis artificial neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部