Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_...Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass was observed with typical spin glass behavior around 15.5 K.In addition,we find that the magnetic entropy change(-△S_(M))originates from the sample undergoing a ferromagnetic(FM)to paramagnetic(PM)transition around 20 K.Under a field change from 0 T to 7 T,the value of maximum magnetic entropy change(-△S_(M)^(max))reaches 12.5 J/kg·K,and the corresponding value of RC reaches 487.7 J/kg in the temperature range from 6 K to 60 K.The large RC and wide temperature range make the Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass be a promising material for application in magnetic refrigerators.展开更多
Zanthoxylum bungeanum is an important spice and medicinal plant that is unique for its accumulation of abundant secondary metabolites,which create a characteristic aroma and tingling sensation in the mouth.Owing to th...Zanthoxylum bungeanum is an important spice and medicinal plant that is unique for its accumulation of abundant secondary metabolites,which create a characteristic aroma and tingling sensation in the mouth.Owing to the high proportion of repetitive sequences,high heterozygosity,and increased chromosome number of Z.bungeanum,the assembly of its chromosomal pseudomolecules is extremely challenging.Here,we present a genome sequence for Z.bungeanum,with a dramatically expanded size of 4.23 Gb,assembled into 68 chromosomes.This genome is approximately tenfold larger than that of its close relative Citrus sinensis.After the divergence of Zanthoxylum and Citrus,the lineage-specific whole-genome duplication event q-WGD approximately 26.8 million years ago(MYA)and the recent transposable element(TE)burst~6.41 MYA account for the substantial genome expansion in Z.bungeanum.The independent Zanthoxylum-specific WGD event was followed by numerous fusion/fission events that shaped the genomic architecture.Integrative genomic and transcriptomic analyses suggested that prominent speciesspecific gene family expansions and changes in gene expression have shaped the biosynthesis of sanshools,terpenoids,and anthocyanins,which contribute to the special flavor and appearance of Z.bungeanum.In summary,the reference genome provides a valuable model for studying the impact of WGDs with recent TE activity on gene gain and loss and genome reconstruction and provides resources to accelerate Zanthoxylum improvement.展开更多
旋转目标检测是遥感图像处理领域中的重要任务,其存在的目标尺度变化大和目标方向任意等问题给自动目标检测带来了挑战。针对上述问题,提出了一种改进的RoI Transformer旋转目标检测框架:首先,利用RoI Transformer检测框架获取旋转的感...旋转目标检测是遥感图像处理领域中的重要任务,其存在的目标尺度变化大和目标方向任意等问题给自动目标检测带来了挑战。针对上述问题,提出了一种改进的RoI Transformer旋转目标检测框架:首先,利用RoI Transformer检测框架获取旋转的感兴趣区域特征(rotated region of interest,RRoI)用于鲁棒的几何特征提取;其次,在检测器中引入高分辨率网络(high-resolution network,HRNet)提取多分辨率特征图,在保持高分辨率特征同时适应目标的多尺度变化;最后,引入KLD(Kullback-Leibler divergence)损失,解决旋转目标表示的角度周期性的问题,提高检测方法对任意方向目标的适应性,并通过旋转目标边界框参数的联合优化提升目标定位精度。本文提出的旋转目标检测方法,即HRD-ROI Transformer(HRNet+KLD ROI Transformer),在DOTAv1.0和DIOR-R两个公开数据集上与典型的旋转目标检测方法进行了比较。结果显示:相比于传统的RoI Transformer检测框架,本文方法在DOTAv1.0和DIOR-R数据集上检测结果的mAP(mean-average-precision)分别提高了3.7%和4%。展开更多
Diabetic cardiomyopathy(DCM)is a metabolic disease and a leading cause of heart failure among people with diabetes.Mass spectrometry imaging(MSI)is a versatile technique capable of combining the molecular specificity ...Diabetic cardiomyopathy(DCM)is a metabolic disease and a leading cause of heart failure among people with diabetes.Mass spectrometry imaging(MSI)is a versatile technique capable of combining the molecular specificity of mass spectrometry(MS)with the spatial information of imaging.In this study,we used MSI to visualize metabolites in the rat heart with high spatial resolution and sensitivity.We optimized the air flow-assisted desorption electrospray ionization(AFADESI)-MSI platform to detect a wide range of metabolites,and then used matrix-assisted laser desorption ionization(MALDI)-MSI for increasing metabolic coverage and improving localization resolution.AFADESI-MSI detected 214 and 149 metabolites in positive and negative analyses of rat heart sections,respectively,while MALDI-MSI detected 61 metabolites in negative analysis.Our study revealed the heterogenous metabolic profile of the heart in a DCM model,with over 105 region-specific changes in the levels of a wide range of metabolite classes,including carbohydrates,amino acids,nucleotides,and their derivatives,fatty acids,glycerol phospholipids,carnitines,and metal ions.The repeated oral administration of ferulic acid during 20 weeks significantly improved most of the metabolic disorders in the DCM model.Our findings provide novel insights into the molecular mechanisms underlying DCM and the potential of ferulic acid as a therapeutic agent for treating this condition.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52371203 and 52271192)the Ministry of Science and Technology of China(Grant No.2021YFB3501201)。
文摘Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass was observed with typical spin glass behavior around 15.5 K.In addition,we find that the magnetic entropy change(-△S_(M))originates from the sample undergoing a ferromagnetic(FM)to paramagnetic(PM)transition around 20 K.Under a field change from 0 T to 7 T,the value of maximum magnetic entropy change(-△S_(M)^(max))reaches 12.5 J/kg·K,and the corresponding value of RC reaches 487.7 J/kg in the temperature range from 6 K to 60 K.The large RC and wide temperature range make the Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass be a promising material for application in magnetic refrigerators.
基金This research was financially supported by the National Key R&D Program of China(2018YFD1000605)the Tianjin Science Fund for Distinguished Young Scholars(18JCJQJC48300).
文摘Zanthoxylum bungeanum is an important spice and medicinal plant that is unique for its accumulation of abundant secondary metabolites,which create a characteristic aroma and tingling sensation in the mouth.Owing to the high proportion of repetitive sequences,high heterozygosity,and increased chromosome number of Z.bungeanum,the assembly of its chromosomal pseudomolecules is extremely challenging.Here,we present a genome sequence for Z.bungeanum,with a dramatically expanded size of 4.23 Gb,assembled into 68 chromosomes.This genome is approximately tenfold larger than that of its close relative Citrus sinensis.After the divergence of Zanthoxylum and Citrus,the lineage-specific whole-genome duplication event q-WGD approximately 26.8 million years ago(MYA)and the recent transposable element(TE)burst~6.41 MYA account for the substantial genome expansion in Z.bungeanum.The independent Zanthoxylum-specific WGD event was followed by numerous fusion/fission events that shaped the genomic architecture.Integrative genomic and transcriptomic analyses suggested that prominent speciesspecific gene family expansions and changes in gene expression have shaped the biosynthesis of sanshools,terpenoids,and anthocyanins,which contribute to the special flavor and appearance of Z.bungeanum.In summary,the reference genome provides a valuable model for studying the impact of WGDs with recent TE activity on gene gain and loss and genome reconstruction and provides resources to accelerate Zanthoxylum improvement.
文摘旋转目标检测是遥感图像处理领域中的重要任务,其存在的目标尺度变化大和目标方向任意等问题给自动目标检测带来了挑战。针对上述问题,提出了一种改进的RoI Transformer旋转目标检测框架:首先,利用RoI Transformer检测框架获取旋转的感兴趣区域特征(rotated region of interest,RRoI)用于鲁棒的几何特征提取;其次,在检测器中引入高分辨率网络(high-resolution network,HRNet)提取多分辨率特征图,在保持高分辨率特征同时适应目标的多尺度变化;最后,引入KLD(Kullback-Leibler divergence)损失,解决旋转目标表示的角度周期性的问题,提高检测方法对任意方向目标的适应性,并通过旋转目标边界框参数的联合优化提升目标定位精度。本文提出的旋转目标检测方法,即HRD-ROI Transformer(HRNet+KLD ROI Transformer),在DOTAv1.0和DIOR-R两个公开数据集上与典型的旋转目标检测方法进行了比较。结果显示:相比于传统的RoI Transformer检测框架,本文方法在DOTAv1.0和DIOR-R数据集上检测结果的mAP(mean-average-precision)分别提高了3.7%和4%。
基金supported by the National Natural Science Foundation of China(Grant Nos.:21927808 and 81803483).
文摘Diabetic cardiomyopathy(DCM)is a metabolic disease and a leading cause of heart failure among people with diabetes.Mass spectrometry imaging(MSI)is a versatile technique capable of combining the molecular specificity of mass spectrometry(MS)with the spatial information of imaging.In this study,we used MSI to visualize metabolites in the rat heart with high spatial resolution and sensitivity.We optimized the air flow-assisted desorption electrospray ionization(AFADESI)-MSI platform to detect a wide range of metabolites,and then used matrix-assisted laser desorption ionization(MALDI)-MSI for increasing metabolic coverage and improving localization resolution.AFADESI-MSI detected 214 and 149 metabolites in positive and negative analyses of rat heart sections,respectively,while MALDI-MSI detected 61 metabolites in negative analysis.Our study revealed the heterogenous metabolic profile of the heart in a DCM model,with over 105 region-specific changes in the levels of a wide range of metabolite classes,including carbohydrates,amino acids,nucleotides,and their derivatives,fatty acids,glycerol phospholipids,carnitines,and metal ions.The repeated oral administration of ferulic acid during 20 weeks significantly improved most of the metabolic disorders in the DCM model.Our findings provide novel insights into the molecular mechanisms underlying DCM and the potential of ferulic acid as a therapeutic agent for treating this condition.