期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Serum response factor promotes axon regeneration following spinal cord transection injury
1
作者 Guo-Ying Feng Nai-Li zhang +5 位作者 Xiao-Wei Liu Ling-Xi Tong Chun-Lei zhang Shuai Zhou lu-ping zhang Fei Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期1956-1960,共5页
Studies have snown that serum response factor is beneficaial for axonar regeneration of peripheral herves.However,Its role after central nervous system injury remains unclear. In this study,we established a rat model ... Studies have snown that serum response factor is beneficaial for axonar regeneration of peripheral herves.However,Its role after central nervous system injury remains unclear. In this study,we established a rat model of T9-T10 spinal cord transection injury.We found that the expression of serum response factor in injured spinal cord gray matter neurons gradually increased with time,reached its peak on the 7^(th) day,and then gradually decreased.To investigate the role of serum response factor,we used lentivirus vecto rs to ove rexpress and silence serum response factor in spinal cord tissue.We found that overexpression of serum response factor promoted motor function recovery in rats with spinal cord injury.Qualitative observation of biotinylated dextran amine anterograde tra cing showed that ove rexpression of serum response factor increased nerve fibers in the injured spinal co rd.Additionally,transmission electron microscopy showed that axon and myelin sheath morphology was restored.Silencing serum response factor had the opposite effects of ove rexpression.These findings suggest that serum response factor plays a role in the recovery of motor function after spinal cord injury.The underlying mechanism may be related to the regulation of axonal regeneration. 展开更多
关键词 AXON growth associated protein 43 motor function myelin sheath NEURON REGENERATION serum response factor spinal cord spinal cord transection
下载PDF
Transcriptome analysis of molecular mechanisms underlying facial nerve injury repair in rats 被引量:2
2
作者 Qian-Qian Cao Shuo Li +4 位作者 Yan Lu Di Wu Wei Feng Yong Shi lu-ping zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第11期2316-2323,共8页
Although the transcriptional alterations inside the facial nucleus after facial nerve injury have been well studied,the gene expression changes in the facial nerve trunk after injury are still unknown.In this study,we... Although the transcriptional alterations inside the facial nucleus after facial nerve injury have been well studied,the gene expression changes in the facial nerve trunk after injury are still unknown.In this study,we established an adult rat model of facial nerve crush injury by compressing the right lateral extracranial nerve trunk.Transcriptome sequencing,differential gene expression analysis,and cluster analysis of the injured facial nerve trunk were performed,and 39 intersecting genes with significant variance in expression were identified.Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the 39 intersecting genes revealed that these genes are mostly involved in leukocyte cell-cell adhesion and phagocytosis and have essential roles in regulating nerve repair.Quantitative real-time polymerase chain reaction assays were used to validate the expression of pivotal genes.Finally,nine pivotal genes that contribute to facial nerve recovery were identified,including Arhgap30,Akr1b8,C5ar1,Csf2ra,Dock2,Hcls1,Inpp5d,Sla,and Spi1.Primary Schwann cells were isolated from the sciatic nerve of neonatal rats.After knocking down Akr1b8 in Schwann cells with an Akr1b8-specific small interfering RNA plasmid,expression levels of monocyte chemoattractant protein-1 and interleukin-6 were decreased,while cell proliferation and migration were not obviously altered.These findings suggest that Akr1b8 likely regulates the interaction between Schwann cells and macrophages through regulation of cytokine expression to promote facial nerve regeneration.This study is the first to reveal a transcriptome change in the facial nerve trunk after facial nerve injury,thereby revealing the potential mechanism underlying repair of facial nerve injury.This study was approved by the Animal Ethics Committee of Nantong University,China in 2018(approval No.S20180923-007). 展开更多
关键词 Akr1b8 cell proliferation facial nerve injury Gene-Act Networks inflammatory response RNA-SEQ Schwann cells transcriptomics analysis
下载PDF
Continuous-variable quantum key distribution based on photon addition operation
3
作者 陈小婷 张露萍 +2 位作者 常守康 张欢 胡利云 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期126-132,共7页
It is shown that the non-Gaussian operations can not only be used to prepare the nonclassical states, but also to improve the entanglement degree between Gaussian states. Thus these operations are naturally considered... It is shown that the non-Gaussian operations can not only be used to prepare the nonclassical states, but also to improve the entanglement degree between Gaussian states. Thus these operations are naturally considered to enhance the performance of continuous variable quantum key distribution(CVQKD), in which the non-Gaussian operations are usually placed on the right-side of the entangled source. Here we propose another scheme for further improving the performance of CVQKD with the entangled-based scheme by operating photon-addition operation on the left-side of the entangled source.It is found that the photon-addition operation on the left-side presents both higher success probability and better secure key rate and transmission distance than the photon subtraction on the right-side, although they share the same maximal tolerable noise. In addition, compared to both photon subtraction and photon addition on the right-side, our scheme shows the best performance and the photon addition on the right-side is the worst. 展开更多
关键词 non-Gaussian operations continuous variable quantum key distribution photon-addition operation
下载PDF
Work-function-induced interfacial electron redistribution of MoO_(2)/WO_(2) heterostructures for high-efficiency electrocatalytic hydrogen evolution reaction
4
作者 Tong-Fei Li Jing Li +7 位作者 lu-ping zhang Jia-Wei Ke Meng-Xing Fan Li-Fang zhang Cheng-Wei Deng Yi Sun Tao Qian Cheng-Lin Yan 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期489-499,共11页
The engineering of the electronic configurations of active sites,together with the production of more accessible active sites through heterostructure design,has been established as a forceful methodology for boosting ... The engineering of the electronic configurations of active sites,together with the production of more accessible active sites through heterostructure design,has been established as a forceful methodology for boosting water electrolysis performance.Herein,a facile approach is developed to fabricate well-dispersed MoO_(2) and WO_(2) nanoparticles with abundant heterointerfaces entrapped in N,P-doped carbon nanofibers(referred to as MoO_(2)/WO_(2)@N,P-CNFs hereafter)as hydrogen evolution reaction(HER)electrocatalysts in alkaline and acidic electrolytes.Extensive spectroscopic analyses and theoretical findings manifest that the heterointerface formed by the work function modulation of MoO_(2)/WO_(2) triggers the spontaneous electron redistribution from MoO_(2)to WO_(2) and a built-in electric field,which is essential to promote water adsorption,optimize the H-intermediate adsorption energy,result in the enhanced charge transfer efficiency,and ultimately increase the intrinsic HER activity.Simultaneously,the intimate confinement of MoO_(2)/WO_(2) heterostructures in the porous carbon substrate can restrain the active sites from unfavorable coarsening and detachment,thus ensuring facilitated HER kinetics and outstanding structural robustness.As a result,MoO_(2)/WO_(2)@N,P-CNFs exhibit superior catalytic HER performance in acidic and basic solutions,requiring 118 and 95 mV overpotentials to achieve 10 mA·cm^(−2),respectively,surpassing a number of reported non-noble metal-based electrocatalysts.This work provides guidelines for the rational design and construction of special metallic heterocomponents with optimized interfacial electronic structure for various electrochemical technologies. 展开更多
关键词 Electrospinning MoO_(2)/WO_(2) heterostructure Work function Hydrogen evolution reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部