期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Revealing the Structure-Property Difference of Natural Rubber Prepared by Different Methods: Protein and Gel Content are Key Factors
1
作者 Shao-Qi Huang Jun-Qi Zhang +5 位作者 Yong Zhu Ling-Min Kong lu-sheng liao Fu-Quan Zhang Zheng-Tian Xie Jin-Rong Wu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第4期457-467,共11页
Natural rubber (NR) is widely used in various fields including aerospace, military industry and transportation due to its superior elasticity and comprehensive mechanical properties. Nonetheless, the commercial NR pre... Natural rubber (NR) is widely used in various fields including aerospace, military industry and transportation due to its superior elasticity and comprehensive mechanical properties. Nonetheless, the commercial NR prepared by different methods usually exhibits different mechanical properties, primarily due to variations in processing conditions during the conversion from latex to bulk rubber material. Consequently, this poses challenges in scientific research and industrial production of NR. In order to assess the properties of various commercially available NR and identify key structural and compositional components, this study systematically compares and analyzes four representative NR raw materials: air dried sheet (ADS), ribbed smoked sheets (RSS), constant viscidity NR (CV), and whole field latex rubber (WF). The investigation focuses on evaluating their static mechanical behavior, SIC behavior, wear resistance, and fatigue resistance. The findings indicate that protein and gel content exhibit a crucial influence on the NR properties. These constituents contribute to the formation of a high-crosslinking density region, generating a heterogeneous network structure within the rubber. This structure amplifies strains during deformation, leading to earlier and stronger strain-induced crystallization (SIC). Among the four commercial NR brands, RSS demonstrates superior overall mechanical and dynamic properties owing to its high protein and gel content. This study serves as a valuable reference for comprehending the differences in properties among various commercial NR, thereby offering guidance for the actual processing and selection of NR. 展开更多
关键词 Natural rubber Processingmethod PROTEIN Gel content PROPERTY
原文传递
A Robust Self-healing Polyurethane Elastomer Enabled by Tuning the Molecular Mobility and Phase Morphology through Disulfide Bonds 被引量:4
2
作者 Hai-Tao Wu Bi-Qiang Jin +8 位作者 Hao Wang Wen-Qiang Wu Zhen-Xing Cao Zhao-Yang Yuan Yue Huang Wei-Hang Li Guang-Su Huang lu-sheng liao Jin-Rong Wu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第10期1299-1309,I0007,共12页
Elastomers with outstanding strength,toughness and healing efficiency are highly promising for many emerging fields.However,it is still a challenge to integrate all these beneficial features in one elastomer.Herein,an... Elastomers with outstanding strength,toughness and healing efficiency are highly promising for many emerging fields.However,it is still a challenge to integrate all these beneficial features in one elastomer.Herein,an asymmetric alicyclic structure adjacent to aromatic disulfide was tactfully introduced into the backbone of polyurethane(PU)elastomer.Specifically,such elastomer(PU-HPS)was fabricated by polycondensing polytetramethylene ether glycol(PTMEG),isophorone diisocyanate(IPDI)and p-hydroxydiphenyl disulfide(HPS)via one-pot method.The molecular mobility and phase morphology of PU-HPS can be tuned by adjusting the HPS content.Consequently,the dynamic exchange of hydrogen and disulfide bonds in the hard segment domains can also be tailored.The optimized sample manifests outstanding tensile strength(46.4 MPa),high toughness(109.1 MJ/m^(3)),high self-healing efficiency after fracture(90.3%),complete scratch recovery(100%)and good puncture resistance.Therefore,this work provides a facile strategy for developing robust self-healing polymers. 展开更多
关键词 SELF-HEALING POLYURETHANE Disulfide bonds Chain mobility Phase morphology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部