We demonstrate a tunable imaging system based on the functionality of the mammalian eye using soft-matter micro-optical components.Inspired by the structure of the eye,as well as by the means through which nature tune...We demonstrate a tunable imaging system based on the functionality of the mammalian eye using soft-matter micro-optical components.Inspired by the structure of the eye,as well as by the means through which nature tunes its optical behavior,we show that the technologies of microsystems engineering and micro-optics may be used to realize a technical imaging system whose biomimetic functionality is entirely distinct from that of conventional optics.The engineered eyeball integrates a deformable elastomeric refractive structure whose shape is mechanically controlled through application of strain using liquid crystal elastomer(LCE)actuators;two forms of tunable iris,one based on optofluidics and the other on LCEs with embedded heaters;a fixed lens arrangement;and a commercial imaging sensor chip.The complete microsystem,optimized to yield optical characteristics close to those of the human eye,represents the first fully functional,soft-matter-based tunable single-aperture eye-like imager.展开更多
基金supported by the Priority Program‘Active Micro-optics’funded by the German Research Foundation(DFG).
文摘We demonstrate a tunable imaging system based on the functionality of the mammalian eye using soft-matter micro-optical components.Inspired by the structure of the eye,as well as by the means through which nature tunes its optical behavior,we show that the technologies of microsystems engineering and micro-optics may be used to realize a technical imaging system whose biomimetic functionality is entirely distinct from that of conventional optics.The engineered eyeball integrates a deformable elastomeric refractive structure whose shape is mechanically controlled through application of strain using liquid crystal elastomer(LCE)actuators;two forms of tunable iris,one based on optofluidics and the other on LCEs with embedded heaters;a fixed lens arrangement;and a commercial imaging sensor chip.The complete microsystem,optimized to yield optical characteristics close to those of the human eye,represents the first fully functional,soft-matter-based tunable single-aperture eye-like imager.