Hydrogenated amorphous carbon coatings, deposited by low pressure plasma to minimize the wear of C100 steel components, were optimized and characterized. In order to ensure good adhesion of the films to the steel surf...Hydrogenated amorphous carbon coatings, deposited by low pressure plasma to minimize the wear of C100 steel components, were optimized and characterized. In order to ensure good adhesion of the films to the steel surface, a thin Ti interlayer was deposited, by magnetron sputtering, before the plasma deposition. The chemical characterization of the deposits was performed by means of RAMAN, XPS, RBS and ERDA analysis, while nanoindentation, nanoscratch and nanowear tests allowed to estimating the tribomechanical properties of the deposits, with the aim of evaluating their scuff-resistance. It was found that the optimized plasma deposited hydrogenated amorphous carbon coatings were well adherent to C100 steel and increased more than 70% its surface hardness.展开更多
文摘Hydrogenated amorphous carbon coatings, deposited by low pressure plasma to minimize the wear of C100 steel components, were optimized and characterized. In order to ensure good adhesion of the films to the steel surface, a thin Ti interlayer was deposited, by magnetron sputtering, before the plasma deposition. The chemical characterization of the deposits was performed by means of RAMAN, XPS, RBS and ERDA analysis, while nanoindentation, nanoscratch and nanowear tests allowed to estimating the tribomechanical properties of the deposits, with the aim of evaluating their scuff-resistance. It was found that the optimized plasma deposited hydrogenated amorphous carbon coatings were well adherent to C100 steel and increased more than 70% its surface hardness.