Tribological property of c-axis textured shell-like Ti3AlC2 ceramic was investigated using reciprocating sliding balls (SUS304) under loads of 1,5,and 9 N.It was found that the textured top surface (TTS),corresponding...Tribological property of c-axis textured shell-like Ti3AlC2 ceramic was investigated using reciprocating sliding balls (SUS304) under loads of 1,5,and 9 N.It was found that the textured top surface (TTS),corresponding to the (000l) plane,shows the lowest mean coefficient of friction in comparison with those measured on the textured side surface (TSS),where the sliding directions are parallel (TSS-1) and perpendicular (TSS-2) to c axis,under the same load.Among all the tested orientations,the TSS-2 exhibited the lowest wear rate of 1.51 × 10-3 mm3/(N·m) under the load of 9 N.The worn mechanisms on the TTS and TSS-1 were delamination,grain fracture,and grain spalling-off.On the TSS-2,plowing effect against balls was the dominating mechanism.This work suggests the criteria to maximize the wear resistance in the load range of 1-9 N.展开更多
We developed a novel consolidation technique,Cold Hydrostatic Sintering(CHS),which allows near full densification of silica.The technique is inspired by biosilicification and geological formation of siliceous rocks.Un...We developed a novel consolidation technique,Cold Hydrostatic Sintering(CHS),which allows near full densification of silica.The technique is inspired by biosilicification and geological formation of siliceous rocks.Unlike established cold sintering method which is based on uniaxial pressure,CHS employs an isostatic pressure to enable room temperature consolidation of bulks having a complex threedimensional shape.The resulting material is transparent(in line transmittance exceeding 70% in the visible range)and amorphous.After drying,the Vickers hardness was as high 1.4 GPa which half of materials consolidated at 1200℃ and it is the highest among all materials processed at room temperature.The CHS method,because of its simplicity,might be suitable for broad range of applications including 3D printing,mould forming and preparation of multi-layered devices.Because of the absence of the firing step,CHS could be directly integrated in the manufacturing of a wide range of hybrid(organic/inorganic)materials for functional and biological applications.展开更多
基金'ChuYing' Program of Southwest Jiaotong University and Thousand Talents Program of Sichuan Province.Also,we thank for the supports of National Natural Science Foundation of China,Grant-in-Aid for Scientific Research B (No.23350104) from Japan Society for the Promotion Science,the Fundamental Research Program of Korean Institute of Materials Science,UK EPSRC Material Systems for Extreme Environments Programme Grant
文摘Tribological property of c-axis textured shell-like Ti3AlC2 ceramic was investigated using reciprocating sliding balls (SUS304) under loads of 1,5,and 9 N.It was found that the textured top surface (TTS),corresponding to the (000l) plane,shows the lowest mean coefficient of friction in comparison with those measured on the textured side surface (TSS),where the sliding directions are parallel (TSS-1) and perpendicular (TSS-2) to c axis,under the same load.Among all the tested orientations,the TSS-2 exhibited the lowest wear rate of 1.51 × 10-3 mm3/(N·m) under the load of 9 N.The worn mechanisms on the TTS and TSS-1 were delamination,grain fracture,and grain spalling-off.On the TSS-2,plowing effect against balls was the dominating mechanism.This work suggests the criteria to maximize the wear resistance in the load range of 1-9 N.
基金supported by Thousand Talents Program of China and Sichuan Provincethe Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials(17kffk01)+1 种基金Outstanding Young Scientific and Technical Talents in Sichuan Province(2019JDJQ0009)the Natural Sciences Foundation of China(No.51741208).
文摘We developed a novel consolidation technique,Cold Hydrostatic Sintering(CHS),which allows near full densification of silica.The technique is inspired by biosilicification and geological formation of siliceous rocks.Unlike established cold sintering method which is based on uniaxial pressure,CHS employs an isostatic pressure to enable room temperature consolidation of bulks having a complex threedimensional shape.The resulting material is transparent(in line transmittance exceeding 70% in the visible range)and amorphous.After drying,the Vickers hardness was as high 1.4 GPa which half of materials consolidated at 1200℃ and it is the highest among all materials processed at room temperature.The CHS method,because of its simplicity,might be suitable for broad range of applications including 3D printing,mould forming and preparation of multi-layered devices.Because of the absence of the firing step,CHS could be directly integrated in the manufacturing of a wide range of hybrid(organic/inorganic)materials for functional and biological applications.