In this paper, we consider small perturbations of the KdV-mKdV equation u_t =-u_(xxx) + 6 uu_x + 6 u^2 u_x on the real line with periodic boundary conditions. It is shown that the above equation admits a Cantor family...In this paper, we consider small perturbations of the KdV-mKdV equation u_t =-u_(xxx) + 6 uu_x + 6 u^2 u_x on the real line with periodic boundary conditions. It is shown that the above equation admits a Cantor family of small amplitude quasi-periodic solutions under such perturbations. The proof is based on an abstract infinite dimensional KAM theorem.展开更多
基金Supported by NSFC(11601036,11401041)Science and Technology Foundation of Shandong Province(J16LI52)
文摘In this paper, we consider small perturbations of the KdV-mKdV equation u_t =-u_(xxx) + 6 uu_x + 6 u^2 u_x on the real line with periodic boundary conditions. It is shown that the above equation admits a Cantor family of small amplitude quasi-periodic solutions under such perturbations. The proof is based on an abstract infinite dimensional KAM theorem.