期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Storage, form, and influencing factors of karst inorganic carbon in a carbonate area in China
1
作者 Chaochao DU Xiaoyong BAI +19 位作者 Yangbing LI Qiu TAN Cuiwei ZHAO Guangjie LUO luhua wu Fei CHEN Chaojun LI Chen RAN Sirui ZHANG Lian XIONG Fengjiao SONG Biqin XIAO Zilin LI Yingying XUE Mingkang LONG Qing LUO Xiaoyun ZHANG Minghui LI Xiaoqian SHEN Shu YANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第3期725-739,共15页
Carbonate rock chemical weathering carbon sinks reduce the rate of increase of the atmospheric CO_(2) concentration and global warming. However, uncertainty still exists in the estimation results of carbonate rock che... Carbonate rock chemical weathering carbon sinks reduce the rate of increase of the atmospheric CO_(2) concentration and global warming. However, uncertainty still exists in the estimation results of carbonate rock chemical weathering carbon sink fluxes(CCSF), and the contributions of climate change and ecological restoration to the CCSF are not clear. To this end, we compiled published site data on ion concentrations in different watersheds in China and used a classical thermodynamic dissolution model to reassess the potential and spatial and temporal patterns of the CCSF in China from 1991 to 2020. We quantified the contributions of temperature(MAT), precipitation(MAP), evapotranspiration(ET), soil water(SM), and the normalized difference vegetation index(NDVI) to the CCSF. The results revealed that(1) China's CCSF was 22.76 t CO_(2)km^(-2)yr^(-1), which was higher than the global average(15.77 t CO_(2)km^(-2)yr^(-1)). The total carbonate rock chemical weathering carbon sink(CCS) was 4772.67×10^(4)t CO_(2), contributing 14.91% of the global CCS through a carbonate rock area of 252.98×10^(4)km^(-2).(2) China's CCSF decreased gradually from southeast to northwest, with values of 33.14, 12.93, and7.27 t CO_(2)km^(-2)yr^(-1)in the southern karst, Qinghai-Tibetan karst, and northern karst regions, respectively.(3) The overall CCSF in China exhibited an increasing trend from 1991 to 2020, with a rate of increase of 0.16 t CO_(2)km^(-2)yr^(-1).(4) The contributions of the MAP, MAT, ET, SM, and NDVI to the CCSF were 63.3%, 3.02%, 27.5%, 3.1%, and 3.05%, respectively. Among them, the increase in precipitation was the main contributor to the increase in the CCSF in China over the last 30 years, while the enhancement of ET offset part of the positive contribution of the increase in precipitation to the CCSF. In conclusion, the results of this study provide a systematic quantification of the magnitude, the patterns, and the influencing factors of CCS over a long time series in China. The results are of great significance and provide a reference for the diagnosis and gap analysis of the national and global carbon neutrality capacities. 展开更多
关键词 Carbonate rocks Carbon sinks PATTERNS Influencing factors Thermodynamic dissolution modeling
原文传递
Spatiotemporal evolution of carbon sequestration of limestone weathering in China 被引量:11
2
作者 Huiwen LI Shijie WANG +2 位作者 Xiaoyong BAI Yue CAO luhua wu 《Science China Earth Sciences》 SCIE EI CAS CSCD 2019年第6期974-991,共18页
Carbonate carbon sequestration(CS) can aid in solving the problem of terrestrial residual carbon sinks and imbalances in the global carbon budget. Thus, complete understanding of the magnitude, spatiotemporal distribu... Carbonate carbon sequestration(CS) can aid in solving the problem of terrestrial residual carbon sinks and imbalances in the global carbon budget. Thus, complete understanding of the magnitude, spatiotemporal distribution, and evolution of this sequestration is highly desirable. On the basis of random forest regression and maximal potential dissolution model for carbonate, we estimated the CS of typical carbonate weathering in China from 2000 to 2014, that is, the sequestration of limestone weathering, using long-term ecologic, meteorological, hydrological raster data, and monitored data from 44 watersheds in China and surrounding regions. We extended our analyses by systematically exploring the spatiotemporal pattern and evolution trend of the flux and total sequestration. High levels of ionic activity coefficients of Ca^(2+) and HCO_3^- in limestone regions were observed to be mainly distributed in Northern and Northwestern China with a clear gradient from northwest to southeast. With a contrary spatial pattern, the annual average CS flux(CSF) of limestone weathering in China was estimated to be 4.28 t C km^(-2) yr^(-1), with high values mainly in the karst zones in Southeastern China. The mean CSF in different latitudes showed that Southern China(south of 28.14°N) was the region with the largest interannual fluctuation of flux and CSF increases as latitude decreases. The mean CSF in subtropical and tropical(TR) regions was the maximum of all major climate types, and for the frigid(F), mid-temperate(MTE), warm temperate(WTE), and temperate(TE) major climates; the CSF in the desert(D)subdivided climate was the minimum of these climates. By contrast, the values in grassland(G) and broad-leaved forest subdivided climate were the maximum. The pixel-based trend analysis indicated that the CSF of limestone weathering in China was slightly increasing in the period 2000–2014 with a rate of 0.036 t C km^(-2) yr^(-1). Furthermore, the annual total CS was estimated to be 7.07 Tg carbon per year(Tg C yr^(-1)) with high levels in 2002, 2008, and 2010, and the minimum appeared in 2011 with a slightly increasing trend of the total CS being observed with a rate of 0.06 Tg C yr^(-1). Tibet Autonomous Region was the administrative division with the largest total CS of limestone weathering(1.20 Tg C yr^(-1)) in China, and karst zones in Southeastern China had the largest total CS(4.95 Tg C yr^(-1)) which accounts for 70.01% of that in the three divided karst regions. On the basis of the diversity of rock chemical weathering carbon cycle mechanisms of different carbonate rock types, we estimated that the total CS of carbonate weathering in China may reach 11.37 Tg C yr^(-1)(the sink was approximately 5.02 t C km^(-2) yr^(-1)),which amounts to 16.20% of the total biomass CS in China, furthermore, the CSF of carbonate weathering in China can reach6.54 t C km^(-2) yr^(-1) if excluding the interference of the negative runoff. This finding indicates that CS of carbonate weathering is an indispensable part of China's terrestrial carbon sink system. The research pattern of this study was important for further improving the accuracy of the estimation for the global carbonate weathering carbon sink. 展开更多
关键词 LIMESTONE Chemical WEATHERING carbon SINK SPATIOTEMPORAL evolution DISSOLUTION Random forest
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部