期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Singular Integrals with Variable Kernels in Dyadic Settings
1
作者 Hugo AIMAR Raquel CRESCIMBENI luis nowak 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第8期1565-1579,共15页
In this paper we explore conditions on variable symbols with respect to Haar systems,defining Calderón–Zygmund type operators with respect to the dyadic metrics associated to the Haar bases. We show that Petermi... In this paper we explore conditions on variable symbols with respect to Haar systems,defining Calderón–Zygmund type operators with respect to the dyadic metrics associated to the Haar bases. We show that Petermichl’s dyadic kernel can be seen as a variable kernel singular integral and we extend it to dyadic systems built on spaces of homogeneous type. 展开更多
关键词 Singular integrals spaces of homogeneous type Petermichl’s operator Haar basis
原文传递
Partial Derivatives, Singular Integrals and Sobolev Spaces in Dyadic Settings
2
作者 Hugo Aimar Juan Comesatti +1 位作者 Ivana Gómez luis nowak 《Analysis in Theory and Applications》 CSCD 2023年第3期287-298,共12页
In this note we show that the general theory of vector valued singular integral operators of Calderón-Zygmund defined on general metric measure spaces,can be applied to obtain Sobolev type regularity properties f... In this note we show that the general theory of vector valued singular integral operators of Calderón-Zygmund defined on general metric measure spaces,can be applied to obtain Sobolev type regularity properties for solutions of the dyadic fractional Laplacian.In doing so,we define partial derivatives in terms of Haar multipliers and dyadic homogeneous singular integral operators. 展开更多
关键词 Sobolev regularity Haar basis space of homogeneous type Calder´on-Zygmund operator dyadic analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部