This study investigated the influence of different titanium surfaces on the differentiation of rat osteoblast-like cells (osteo-1). Osteo-1 cells were cultured on the following titanium surfaces: 1) pretreated, smooth...This study investigated the influence of different titanium surfaces on the differentiation of rat osteoblast-like cells (osteo-1). Osteo-1 cells were cultured on the following titanium surfaces: 1) pretreated, smooth surface (PT);2) sandblasted and acid etched surface (SLA);and 3) sandblasted and acid-etched surface rinsed under nitrogen protection to prevent exposure to air and preserved in isotonic saline solution (modSLA). Cell metabolism, total protein content, collagen content and alkaline phosphatase (AP) activity and the formation of calcified nodules were analyzed. The titanium surface did not influence cell metabolism, total protein content and collagen content. The SLA surface influenced cell differentiation, with the observation of a significant reduction of AP activity and formation of calcified nodules after 21 days compared to the PT surface. No difference was observed between the PT and modSLA surfaces. All titanium surfaces tested permitted the full expression of the osteoblast phenotype by osteo-1 cells, including matrix mineralization.展开更多
文摘This study investigated the influence of different titanium surfaces on the differentiation of rat osteoblast-like cells (osteo-1). Osteo-1 cells were cultured on the following titanium surfaces: 1) pretreated, smooth surface (PT);2) sandblasted and acid etched surface (SLA);and 3) sandblasted and acid-etched surface rinsed under nitrogen protection to prevent exposure to air and preserved in isotonic saline solution (modSLA). Cell metabolism, total protein content, collagen content and alkaline phosphatase (AP) activity and the formation of calcified nodules were analyzed. The titanium surface did not influence cell metabolism, total protein content and collagen content. The SLA surface influenced cell differentiation, with the observation of a significant reduction of AP activity and formation of calcified nodules after 21 days compared to the PT surface. No difference was observed between the PT and modSLA surfaces. All titanium surfaces tested permitted the full expression of the osteoblast phenotype by osteo-1 cells, including matrix mineralization.