Members of the ERF Family of Transcription Factors play an important role in plant development and gene expression that regulates responses to biotic and abiotic stress.This work identified 36 ERF family genes in Coff...Members of the ERF Family of Transcription Factors play an important role in plant development and gene expression that regulates responses to biotic and abiotic stress.This work identified 36 ERF family genes in Coffea arabica within the AP2/ERF full domain,using the EST-based genomic resource of the Brazilian Coffee Genome Project.The ERF family genes were classified into nine of the ten existing groups through phylogenetic analysis of the deduced amino acid sequences and comparison with the sequences of the ERF family genes in Arabidopsis.In addition to the AP2 domain,other conserved domains were identified,typical of members of each group.The in silico analysis and expression profiling showed high levels of expression for libraries derived from tissues of fruits,leaves and flowers as well as for libraries subjected to water stress.These results suggest the participation of the ERF family genes of C.arabica in distinct biological functions,such as control of development,maturation,and responses to water stress.The results of this work imply in the selection of promising genes for further functional characterizations that will provide a better understanding of the complex regulatory networks related to plant development and responses to stress,opening up opportunities for coffee breeding programs.展开更多
文摘Members of the ERF Family of Transcription Factors play an important role in plant development and gene expression that regulates responses to biotic and abiotic stress.This work identified 36 ERF family genes in Coffea arabica within the AP2/ERF full domain,using the EST-based genomic resource of the Brazilian Coffee Genome Project.The ERF family genes were classified into nine of the ten existing groups through phylogenetic analysis of the deduced amino acid sequences and comparison with the sequences of the ERF family genes in Arabidopsis.In addition to the AP2 domain,other conserved domains were identified,typical of members of each group.The in silico analysis and expression profiling showed high levels of expression for libraries derived from tissues of fruits,leaves and flowers as well as for libraries subjected to water stress.These results suggest the participation of the ERF family genes of C.arabica in distinct biological functions,such as control of development,maturation,and responses to water stress.The results of this work imply in the selection of promising genes for further functional characterizations that will provide a better understanding of the complex regulatory networks related to plant development and responses to stress,opening up opportunities for coffee breeding programs.