期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
通过实验和理论验证Pt0/SrTiO_(3)-δ复合催化剂双反应路径促进CO_(2)还原
1
作者 李卓根 Qadeer Ul Hassan +6 位作者 张伟斌 朱陆军 高健智 石先进 黄宇 刘鹏 朱刚强 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2023年第3期113-124,共12页
在以H_(2)O为质子源的光催化二氧化碳还原反应(CO_(2)RR)过程中,光解H_(2)O产氢气(H_(2))被认为是一个竞争反应.因此,光催化CO_(2)RR过程需要抑制H_(2)的产生,以提高碳氢产物的选择性和产率.以CO_(2)和H_(2)为反应物的逆水气变换反应(RW... 在以H_(2)O为质子源的光催化二氧化碳还原反应(CO_(2)RR)过程中,光解H_(2)O产氢气(H_(2))被认为是一个竞争反应.因此,光催化CO_(2)RR过程需要抑制H_(2)的产生,以提高碳氢产物的选择性和产率.以CO_(2)和H_(2)为反应物的逆水气变换反应(RWGS)是常见的CO_(2)加氢反应,在较高的温度和催化剂作用下生成CO和H_(2)O.目前,光催化CO_(2)RR研究主要聚焦于产物的选择性,而有关光解H_(2)O产生的还原性气体H_(2)在光热效应的促进下成为CO_(2)RR中新的质子源研究较少.光热催化是一种新的高效催化反应方式,在反应过程中需要光照和加热.光照能够促进半导体光生载流子的激发,热效应则能降低反应物分子的活化势垒,并能够促进中间产物的表面迁移以及生成物的脱附.利用光热催化热力学和动力学上的有利条件,为以H_(2)O为质子源的光热催化CO_(2)RR中RWGS反应提供了H_(2)源以及所需的能量.本文合成了具有强电子转移能力、高热稳定性和化学稳定性的Pt纳米颗粒(NPs)负载在具有丰富氧空位(OVs)的SrTiO_(3)-δ纳米片,形成金属-半导体相互作用的Pt-OVs-STO纳米复合催化剂,并利用该纳米复合催化剂系统地研究了以H_(2)O为质子源的光热催化CO_(2)RR的反应路径.结合X射线粉末衍射、X射线光电子能谱、高角度环形暗场和明场球差校正扫描电子显微镜、电子顺磁共振和紫外可见吸收光谱等表征手段,研究了表面负载的Pt^(0)NPs与SrTiO_(3)-δ之间的相互作用.这种金属-半导体之间的强相互作用和独特的电子结构促进了复合半导体结构的光吸收能力,提升了光生载流子的分离以及对反应物分子的吸附.由H_(2)O分解产生的H_(2)能够有效地促进在Pt-OVs-STO纳米复合结构的双路径CO_(2)还原反应:CO_(2)直接质子化和RWGS反应.DFT理论计算结果表明,该纳米复合结构能够有效地促进半导体表面电荷转移和H_(2)生成,并且降低RWGS反应和CO_(2)质子化的反应势垒.综上,本文阐明了在H_(2)O为质子源的光热催化CO_(2)RR中Pt^(0)/SrTiO_(3)-δ纳米复合结构上光解H_(2)O产生的H_(2)和RWGS反应之间的关系,并为后续的CO_(2)RR的研究提供了新视角. 展开更多
关键词 光热催化 析氢反应 逆水煤气反应 钙钛矿 金属-半导体相互作用
下载PDF
Charge storage mechanisms of cathode materials in rechargeable aluminum batteries 被引量:1
2
作者 Jiashen Meng lujun zhu +2 位作者 Aderemi B.Haruna Kenneth I.Ozoemena Quanquan Pang 《Science China Chemistry》 SCIE EI CSCD 2021年第11期1888-1907,共20页
Rechargeable aluminum batteries(RABs)have attracted great interest as one of the most promising candidates for large-scale energy storage because of their high volumetric capacity,low cost,high safety and the abundanc... Rechargeable aluminum batteries(RABs)have attracted great interest as one of the most promising candidates for large-scale energy storage because of their high volumetric capacity,low cost,high safety and the abundance of aluminum.However,compared with the aluminum anodes,the cathode materials face more problems including low specific capacity,relatively sluggish kinetics in most host structures and/or limited cycle lifespan,which pose the major challenge for RABs in further practical applications.During the past years,intensive efforts have been devoted to developing new cathode materials and/or designing engineered nanostructures to greatly improve RABs’electrochemical performances.In addition to nanotechnologybased electrode structure designs,the intrinsic chemical structures and charge storage mechanisms of cathode materials play an equally crucial role,if not more,in revolutionizing the battery performances.This review,here,focuses on current understandings into the charge storage mechanisms of cathode materials in RABs from a chemical reaction point of view.First,the fundamental chemistry,charge storage mechanisms and design principles of RAB cathode materials are highlighted.Based on different ion charge carriers,the current cathode materials are classified into four groups,including Al^(3+)-hosting,Al Cl_(4)^(-)-hosting,Al Cl_(2)^(+)/Al Cl_(2)^(+)-hosting,and Cl^(-)-hosting cathode materials.Next,the respective typical electrode structures,optimization strategies,electrochemical performances and charge storage mechanisms are discussed in detail to establish their chemistry-structure-property relationships.This review on current understandings of the cathode charge storage mechanisms will lay the ground and hopefully set new directions into the rational design of high-performance cathode materials in RABs,and open up new opportunities for designing new electrolyte systems with respect to the targeted cathode systems. 展开更多
关键词 rechargeable aluminum batteries charge storage mechanisms cathode materials charge carriers large-scale energy storage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部