The internal mechanism of the high hydrophobicity of the coal samples from the Pingdingshan mining area was studied through industrial,element,and surface functional group analysis.Laboratory testing and molecular dyn...The internal mechanism of the high hydrophobicity of the coal samples from the Pingdingshan mining area was studied through industrial,element,and surface functional group analysis.Laboratory testing and molecular dynamics simulations were employed to study the impact of three types of surfactants on the surface adsorption properties and wettability of highly hydrophobic bituminous coal.The results show that the surface of highly hydrophobic bituminous coal is compact,rich in inorganic minerals,and poorly wettable and that coal molecules are dominated by hydrophobic functional groups of aromatic rings and aliphatic structures.The wetting performance of surfactants as the intermediate carrier to connect coal and water molecules is largely determined by the interaction force between surfactants and coal(Fs-c)and the interaction force between surfactants and water(Fs-w),which effectively improve the wettability of modified coal dust via modifying its surface electrical properties and surface energy.A new type of wetting agent with a dust removal rate of 89%has been developed through discovery of a compound wetting agent solution with optimal wetting and settling performance.This paper provides theoretical and technical support for removing highly hydrophobic bituminous coal dust in underground mining.展开更多
Advancing efficient and affordable electrocatalysts to boost the oxygen evolution reaction(OER)is pivotal for sustainable green hydrogen production.Herein,we propose the fabrication of nickel-iron alloy nanoparticles-...Advancing efficient and affordable electrocatalysts to boost the oxygen evolution reaction(OER)is pivotal for sustainable green hydrogen production.Herein,we propose the fabrication of nickel-iron alloy nanoparticles-encapsulated on N-doped vertically aligned graphene array on carbon cloth(NiFe@NVG/CC)as a highly active three-dimensional(3D)catalyst electrode for OER.In 1 M KOH,such NiFe@NVG/CC demonstrates outstanding catalytic performance,necessitating merely overpotential of 245 mV for achieving a current density of 10 mA·cm^(−2),a remarkably low Tafel slope of 36.2 mV·dec^(−1).Furthermore,density functional theory calculations validate that the incorporate of N species into graphene can reinforce the electrocatalytic activity though reducing the reaction energy barrier during the conversion of*O to*OOH intermediates.The outstanding performance and structural benefits of NiFe@NVG/CC offer valuable insights for the development of innovative and efficient electrocatalysts for water oxidation.展开更多
Seawater electrolysis,especially in coastlines,is widely considered as a sustainable way of making clean and high-purity H2 from renewable energy;however,the practical viability is challenged severely by the limited a...Seawater electrolysis,especially in coastlines,is widely considered as a sustainable way of making clean and high-purity H2 from renewable energy;however,the practical viability is challenged severely by the limited anode durability resulting from side reactions of chlorine species.Herein,we report an effective Cl^(−) blocking barrier of NiFe-layer double hydroxide(NiFe-LDH)to harmful chlorine chemistry during alkaline seawater oxidation(ASO),a pre-formed surface-derived NiFe-phosphate(Pi)outerlayer.Specifically,the PO_(4)^(3−)-enriched outer-layer is capable of physically and electrostatically inhibiting Cl−adsorption,which protects active Ni^(3+)sites during ASO.The NiFe-LDH with the NiFe-Pi outer-layer(NiFe-LDH@NiFe-Pi)exhibits higher current densities(j)and lower overpotentials to afford 1 A·cm^(−2)(η1000 of 370 mV versusη1000 of 420 mV)than the NiFe-LDH in 1 M KOH+seawater.Notably,the NiFe-LDH@NiFe-Pi also demonstrates longer-term electrochemical durability than NiFe-LDH,attaining 100-h duration at the j of 1 A·cm^(−2).Additionally,the importance of surface-derived PO_(4)^(3−)-enriched outer-layer in protecting the active centers,γ-NiOOH,is explained by ex situ characterizations and in situ electrochemical spectroscopic studies.展开更多
The anodic electrooxidation of ethanol to value-added acetate is an excellent example of replacing the oxygen evolution reaction to promote the cathodic hydrogen evolution reaction and save energy.Herein,we present a ...The anodic electrooxidation of ethanol to value-added acetate is an excellent example of replacing the oxygen evolution reaction to promote the cathodic hydrogen evolution reaction and save energy.Herein,we present a colloidal strategy to produce Ni-Fe bimetallic alloy nanoparticles(NPs)as efficient electrocatalysts for the electrooxidation of ethanol in alkaline media.Ni-Fe alloy NPs deliver a current density of 100 mA·cm^(-2) in a 1.0 M KOH solution containing 1.0 M ethanol merely at 1.5 V vs.reversible hydrogen electrode(RHE),well above the performance of other electrocatalysts in a similar system.Within continuous 10 h testing at this external potential,this electrode is able to produce an average of 0.49 mmol·cm^(-2)·h^(-1) of acetate with an ethanol-to-acetate Faradaic efficiency of 80%.A series of spectroscopy techniques are used to probe the electrocatalytic process and analyze the electrolyte.Additionally,density functional theory(DFT)calculations demonstrate that the iron in the alloy NPs significantly enhances the electroconductivity and electron transfer,shifts the rate-limiting step,and lowers the energy barrier during the ethanol-to-acetate reaction pathway.展开更多
It is of great importance to design and develop electrocatalysts that are both long-lasting and efficient for seawater oxidation.Herein,a three-dimensional porous cauliflower-like Ni_(3)S_(2) foam on Ni foam(Ni_(3)S_(...It is of great importance to design and develop electrocatalysts that are both long-lasting and efficient for seawater oxidation.Herein,a three-dimensional porous cauliflower-like Ni_(3)S_(2) foam on Ni foam(Ni_(3)S_(2) foam/NF)is proposed as a high-performance electrocatalyst for the oxygen evolution reaction in alkaline seawater.The as-synthesis Ni_(3)S_(2) foam/NF achieves exceptional efficacy,achieving a current density of 100 mA·cm^(−2)at mere overpotential of 369 mV.Notably,its electrocatalytic stability extends up to 1000 h at 500 mA·cm^(−2).展开更多
The development of highly efficient sodium-ion batteries depends critically on the successful exploitation of advanced anode hosts that is capable of overcoming sluggish reaction kinetics while also withstanding sever...The development of highly efficient sodium-ion batteries depends critically on the successful exploitation of advanced anode hosts that is capable of overcoming sluggish reaction kinetics while also withstanding severe structural deformation triggered by the large radius of Na^(+)-insertion.Herein,a hierarchically hybrid material with hetero-Co_(3)S_(4)/NiS hollow nanosphere packaged into a densified N-doped carbonmatrix(Co_(3)S_(4)/NiS@N-C)was designed and fabricated utilizing CoNi-glycerate as the self-sacrifice template,making the utmost of the synergistic effect of hetero-Co_(3)S_(4)/NiS with strong electric field and rich reaction active-sites together with the densified outer-carbon scaffolds with remarkable electronic conductivity and robust mechanical toughness.As anticipated,as-fabricated Co_(3)S_(4)/NiS@N-C anode affords remarkable specific capacity,prolonged cycle lifespan up to 2400 cycles with an only 0.05%fading each cycle at 20.0 A g^(−1),and excellent rate feature(354.9 mAh g^(−1)at 30.0 A g^(−1)),one of the best performances for most existing Co_(3)S_(4)/NiS-based anodes.Ex situ structural characterizations in tandem with theoretical analysis demonstrate the reversible insertion-conversion mechanism of initially proceeding with Na^(+)de-/intercalation and superior heterogeneous interfacial reaction behavior with strong Na^(+)-adsorption ability.Further,sodium-ion full cell and hybrid capacitor based on Co_(3)S_(4)/NiS@N-C anode exhibit impressive electrochemical characteristics on cycling performance and rate capability,showcasing its outstanding feasibility toward practical use.展开更多
The interfacial performance of implanted neural electrodes is crucial for stimulation safety and the recording quality of neuronal activity.This paper proposes a novel surface architecture and optimization strategy fo...The interfacial performance of implanted neural electrodes is crucial for stimulation safety and the recording quality of neuronal activity.This paper proposes a novel surface architecture and optimization strategy for the platinum–iridium(Pt–Ir)electrode to optimize electrochemical performance and wettability.A series of surface micro/nano structures were fabricated on Pt–Ir electrodes with different combinations of four adjustable laser-processing parameters.Subsequently,the electrodes were characterized by scanning electron microscopy,energy-dispersive X-ray spectroscopy,cyclic voltammetry,electrochemical impedance spectroscopy,and wetting behavior.The results show that electrode performance strongly depends on the surface morphology.Increasing scanning overlap along with moderate pulse energy and the right number of pulses leads to enriched surface micro/nano structures and improved electrode performance.It raises the maximum charge storage capacity to 128.2 mC/cm^(2) and the interface capacitance of electrodes to 3.0×10^(4)μF/cm^(2) for the geometric area,compared with 4.6 mC/cm^(2) and 443.1μF/cm2,respectively,for the smooth Pt–Ir electrode.The corresponding optimal results for the optically measured area are 111.8 mC/cm^(2) and 2.6×10^(4)μF/cm^(2),which indicate the contribution of fner structures to the ablation profle.The hierarchical structures formed by the femtosecond laser dramatically enhanced the wettability of the electrode interface,giving it superwicking properties.A wicking speed of approximately 80 mm/s was reached.Our optimization strategy,leading to superior performance of the superwicking Pt–Ir interface,is promising for use in new neural electrodes.展开更多
Thermal barrier coatings (TBCs) are widely applied in thermal components to protect metallic components. Owing to the complex layered structure of TBCs and difficult preparation of coating, the mechanical characteriza...Thermal barrier coatings (TBCs) are widely applied in thermal components to protect metallic components. Owing to the complex layered structure of TBCs and difficult preparation of coating, the mechanical characterization of TBCs should be of primary importance. With regard to TBCs, this study deals with the constitutive parameters identification of bi-material. Considering the complex construction and boundary of bi material, the virtual fields method (VFM) was employed in this study. A methodology based on the optimized virtual fields method combined with moire interferometry was proposed for the constitutive parameters identification of bi-material. The feasibility of this method is verified using simulated deformation fields of a two-layer material subjected to three point ben ding loading. As an application, the deformation fields of the TBC specimens were measured by moire interferometry. Then, lhe mechanical parameters of the coating were identified by the proposed method. The identification results indicate that Young's modulus of the TBC top coating is 89.91 GPa, and its Poisson's ratio is 0.23.展开更多
Electrocatalytic synthesis of urea through C-N bond formation,converting carbon dioxide(CO_(2))and ni-trate(NO_(3)^(-)),presents a promising,less energy-intensive alternative to industrial urea production process.In t...Electrocatalytic synthesis of urea through C-N bond formation,converting carbon dioxide(CO_(2))and ni-trate(NO_(3)^(-)),presents a promising,less energy-intensive alternative to industrial urea production process.In this communication,we report the application of Mo_(2)C nanosheets-decorated carbon sheets(Mo_(2)C/C)as a highly efficient electrocatalyst for facilitating C-N coupling in ambient urea electrosynthesis.In CO_(2)-saturated 0.2 mol/L Na_(2)SO_(4)solution containing 0.05 mol/L NO_(3)^(-),the Mo_(2)C/C catalyst achieves an impres-sive urea yield of 579.13μg h^(-1)mg^(-1)with high Faradaic efficiency of 44.80%at-0.5 V versus the reversible hydrogen electrode.Further theoretical calculations reveal that the multiple Mo active sites enhance the formation of^(∗)CO and^(∗)NH_(2)intermediates and facilitate their C-N coupling.This research propels the use of Mo_(2)C-based electrodes in electrocatalysis and accentuates the capabilities of binary metal-based catalysts in C-N coupling reactions.展开更多
Last July, a "breakthrough" in the fields of brain implants and brain-computer interfaces has leaped to the public’s eyes from Elon Musk and Neuralink. They published a brain-machine interface platform whic...Last July, a "breakthrough" in the fields of brain implants and brain-computer interfaces has leaped to the public’s eyes from Elon Musk and Neuralink. They published a brain-machine interface platform which consists of a group of flexible arrays for sensing, a neurosurgical robot for localization, and an electronic chip for low-power data acquisition [1]. The platform has been validated in rats and the implanted electrodes have successfully detected thousands of channels of neural spikes.展开更多
Carbon nanotube yarns(CNTY)possess good specific strength and specific conductivity.As such,their potential for commercial applications is significant.Fatigue performance is a significant consideration in yarn/wire ap...Carbon nanotube yarns(CNTY)possess good specific strength and specific conductivity.As such,their potential for commercial applications is significant.Fatigue performance is a significant consideration in yarn/wire applications.In this study,the flexural fatigue performance of CNTY spun from super-aligned carbon nanotube arrays was investigated using a reversed bending test.The results showed that CNTY exhibited excellent resistance to pure flexural fatigue,significantly outperforming stainless steel wire;CNTY failed where a combination of flexural fatigue and tension–tension fatigue had special hollow fracture morphology,and CNTY resistance remained fundamentally unchanged in the combination fatigue process.展开更多
Humans have never stopped exploring their brains,one of the most complex systems in nature.A thorough understanding of the brain is the ultimate challenge for neuroscientists.As there is a rapid increase in the aging ...Humans have never stopped exploring their brains,one of the most complex systems in nature.A thorough understanding of the brain is the ultimate challenge for neuroscientists.As there is a rapid increase in the aging populations and the number of brain disorders,researchers are much more eager to clarify how the billions of展开更多
Neural electrode interfaces are essential to the stimulation safety and recording quality of various bioelectronic therapies.The recently proposed hierarchical platinum-iridium(Pt-Ir)electrodes produced by femtosecond...Neural electrode interfaces are essential to the stimulation safety and recording quality of various bioelectronic therapies.The recently proposed hierarchical platinum-iridium(Pt-Ir)electrodes produced by femtosecond lasers have exhibited superior electrochemical performance in vitro,but their in vivo performance is still unclear.In this study,we explored the electrochemical performance,biological response,and tissue adhesion of hierarchical Pt-Ir electrodes by implantation in adult rat brains for 1,8,and 16 weeks.Regular smooth Pt-Ir electrodes were used as a control.The results showed that the electrochemical performance of both electrodes decreased and leveled off during implantation.However,after 16 weeks,the charge storage capacity of hierarchical electrodes stabilized at~16.8 mC/cm^(2),which was 15 times that of the smooth control electrodes(1.1 mC/cm^(2)).Moreover,the highly structured electrodes had lower impedance amplitude and cutoff frequency values.The similar histological response to smooth electrodes indicated good biocompatibility of the hierarchically structured Pt-Ir electrodes.Given their superior in vivo performance,the femtosecond laser-treated Pt-Ir electrode showed great potential for neuromodulation applications.展开更多
This article provides a brief overview of the teaching and research at the School of Aerospace Engineering(SAE) to celebrate the 80 th anniversary of the establishment of aeronautics as a discipline at Tsinghua Univer...This article provides a brief overview of the teaching and research at the School of Aerospace Engineering(SAE) to celebrate the 80 th anniversary of the establishment of aeronautics as a discipline at Tsinghua University. The evolution of the school, undergraduate/graduate students and faculty members, and research activities and achievements have been described. The research input including research funding and research projects are summarized, showing a diversity of funding sources and a significant growth in either sum total or spending per researcher. The achievements including publications and inter/national academic awards are also introduced. It can be seen that the level of academic publications has been growing over the past decades. In addition,four representative research achievements have been briefly described to show the scientific contributions of the school.展开更多
文摘The internal mechanism of the high hydrophobicity of the coal samples from the Pingdingshan mining area was studied through industrial,element,and surface functional group analysis.Laboratory testing and molecular dynamics simulations were employed to study the impact of three types of surfactants on the surface adsorption properties and wettability of highly hydrophobic bituminous coal.The results show that the surface of highly hydrophobic bituminous coal is compact,rich in inorganic minerals,and poorly wettable and that coal molecules are dominated by hydrophobic functional groups of aromatic rings and aliphatic structures.The wetting performance of surfactants as the intermediate carrier to connect coal and water molecules is largely determined by the interaction force between surfactants and coal(Fs-c)and the interaction force between surfactants and water(Fs-w),which effectively improve the wettability of modified coal dust via modifying its surface electrical properties and surface energy.A new type of wetting agent with a dust removal rate of 89%has been developed through discovery of a compound wetting agent solution with optimal wetting and settling performance.This paper provides theoretical and technical support for removing highly hydrophobic bituminous coal dust in underground mining.
基金the National Natural Science Foundation of China(Nos.52202214,52001059,52001059,and 52202215)Sichuan Natural Science Foundation(No.23NSFSC3565)+1 种基金China National Postdoctoral Program for Innovative Talents(No.BX2021053)China Postdoctoral Science Foundation(No.2021M700680).
文摘Advancing efficient and affordable electrocatalysts to boost the oxygen evolution reaction(OER)is pivotal for sustainable green hydrogen production.Herein,we propose the fabrication of nickel-iron alloy nanoparticles-encapsulated on N-doped vertically aligned graphene array on carbon cloth(NiFe@NVG/CC)as a highly active three-dimensional(3D)catalyst electrode for OER.In 1 M KOH,such NiFe@NVG/CC demonstrates outstanding catalytic performance,necessitating merely overpotential of 245 mV for achieving a current density of 10 mA·cm^(−2),a remarkably low Tafel slope of 36.2 mV·dec^(−1).Furthermore,density functional theory calculations validate that the incorporate of N species into graphene can reinforce the electrocatalytic activity though reducing the reaction energy barrier during the conversion of*O to*OOH intermediates.The outstanding performance and structural benefits of NiFe@NVG/CC offer valuable insights for the development of innovative and efficient electrocatalysts for water oxidation.
基金supported by the Free Exploration Project of Frontier Technology for Laoshan Laboratory(No.16-02)the National Natural Science Foundation of China(Nos.22072015 and 21927811).
文摘Seawater electrolysis,especially in coastlines,is widely considered as a sustainable way of making clean and high-purity H2 from renewable energy;however,the practical viability is challenged severely by the limited anode durability resulting from side reactions of chlorine species.Herein,we report an effective Cl^(−) blocking barrier of NiFe-layer double hydroxide(NiFe-LDH)to harmful chlorine chemistry during alkaline seawater oxidation(ASO),a pre-formed surface-derived NiFe-phosphate(Pi)outerlayer.Specifically,the PO_(4)^(3−)-enriched outer-layer is capable of physically and electrostatically inhibiting Cl−adsorption,which protects active Ni^(3+)sites during ASO.The NiFe-LDH with the NiFe-Pi outer-layer(NiFe-LDH@NiFe-Pi)exhibits higher current densities(j)and lower overpotentials to afford 1 A·cm^(−2)(η1000 of 370 mV versusη1000 of 420 mV)than the NiFe-LDH in 1 M KOH+seawater.Notably,the NiFe-LDH@NiFe-Pi also demonstrates longer-term electrochemical durability than NiFe-LDH,attaining 100-h duration at the j of 1 A·cm^(−2).Additionally,the importance of surface-derived PO_(4)^(3−)-enriched outer-layer in protecting the active centers,γ-NiOOH,is explained by ex situ characterizations and in situ electrochemical spectroscopic studies.
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC1229)the open project from Hebei Key Laboratory of Photoelectric Control on Surface and Interface(No.ZD2022003)+3 种基金J.S.L.thanks the project funded by China Postdoctoral Science Foundation(project No.2023MD734228)It was also supported by the European Regional Development Funds and by the Spanish Ministerio de Ciencia e Innovación through the project COMBENERGY(No.PID2019-105490RB-C32)Y.Y.Y.acknowledges funding from the National Natural Science Foundation of China(NSFC,No.22172121)the Fundamental Research Funds for the Central Universities,Southwest Minzu University(No.xiao2021102).
文摘The anodic electrooxidation of ethanol to value-added acetate is an excellent example of replacing the oxygen evolution reaction to promote the cathodic hydrogen evolution reaction and save energy.Herein,we present a colloidal strategy to produce Ni-Fe bimetallic alloy nanoparticles(NPs)as efficient electrocatalysts for the electrooxidation of ethanol in alkaline media.Ni-Fe alloy NPs deliver a current density of 100 mA·cm^(-2) in a 1.0 M KOH solution containing 1.0 M ethanol merely at 1.5 V vs.reversible hydrogen electrode(RHE),well above the performance of other electrocatalysts in a similar system.Within continuous 10 h testing at this external potential,this electrode is able to produce an average of 0.49 mmol·cm^(-2)·h^(-1) of acetate with an ethanol-to-acetate Faradaic efficiency of 80%.A series of spectroscopy techniques are used to probe the electrocatalytic process and analyze the electrolyte.Additionally,density functional theory(DFT)calculations demonstrate that the iron in the alloy NPs significantly enhances the electroconductivity and electron transfer,shifts the rate-limiting step,and lowers the energy barrier during the ethanol-to-acetate reaction pathway.
基金the Deanship of Scientific Research at King Khalid University for funding support through large group Research Project under grant(No.RGP2/119/45).
文摘It is of great importance to design and develop electrocatalysts that are both long-lasting and efficient for seawater oxidation.Herein,a three-dimensional porous cauliflower-like Ni_(3)S_(2) foam on Ni foam(Ni_(3)S_(2) foam/NF)is proposed as a high-performance electrocatalyst for the oxygen evolution reaction in alkaline seawater.The as-synthesis Ni_(3)S_(2) foam/NF achieves exceptional efficacy,achieving a current density of 100 mA·cm^(−2)at mere overpotential of 369 mV.Notably,its electrocatalytic stability extends up to 1000 h at 500 mA·cm^(−2).
基金Natural Science Foundation of Chongqing,Grant/Award Numbers:CSTB2022NSCQ-MSX0798,CSTB2023NSCQ-MSX0371Natural Science Foundation of Sichuan,Grant/Award Number:24NSFSC1052+4 种基金Science and Technology Research Program of Chongqing Municipal Education Commission,Grant/Award Numbers:KJQN202101439,KJQN202101441Youth Science and Technology Foundation of Gansu Province,Grant/Award Number:21JR1RA320Cooperative Projects between Undergraduate Universities in Chongqing and Institutes affiliated with Chinese Academy of Sciences,Grant/Award Number:HZ2021014Key Projects of Technological Innovation and Application Development in Chongqing,Grant/Award Number:2022TIAD-KPX0159Chongqing Talent Innovation and Entrepreneurship Team Project,Grant/Award Number:CQYC202203091274。
文摘The development of highly efficient sodium-ion batteries depends critically on the successful exploitation of advanced anode hosts that is capable of overcoming sluggish reaction kinetics while also withstanding severe structural deformation triggered by the large radius of Na^(+)-insertion.Herein,a hierarchically hybrid material with hetero-Co_(3)S_(4)/NiS hollow nanosphere packaged into a densified N-doped carbonmatrix(Co_(3)S_(4)/NiS@N-C)was designed and fabricated utilizing CoNi-glycerate as the self-sacrifice template,making the utmost of the synergistic effect of hetero-Co_(3)S_(4)/NiS with strong electric field and rich reaction active-sites together with the densified outer-carbon scaffolds with remarkable electronic conductivity and robust mechanical toughness.As anticipated,as-fabricated Co_(3)S_(4)/NiS@N-C anode affords remarkable specific capacity,prolonged cycle lifespan up to 2400 cycles with an only 0.05%fading each cycle at 20.0 A g^(−1),and excellent rate feature(354.9 mAh g^(−1)at 30.0 A g^(−1)),one of the best performances for most existing Co_(3)S_(4)/NiS-based anodes.Ex situ structural characterizations in tandem with theoretical analysis demonstrate the reversible insertion-conversion mechanism of initially proceeding with Na^(+)de-/intercalation and superior heterogeneous interfacial reaction behavior with strong Na^(+)-adsorption ability.Further,sodium-ion full cell and hybrid capacitor based on Co_(3)S_(4)/NiS@N-C anode exhibit impressive electrochemical characteristics on cycling performance and rate capability,showcasing its outstanding feasibility toward practical use.
基金the National Natural Science Foundation of China(Nos.51777115 and 81527901)the National Key Research and Development Program of China(Nos.2016YFC0105502 and 2016YFC0105900)Tsinghua University Intiative Scientifc Research Program and Major Achievements Transformation Project of Beijing’s College.
文摘The interfacial performance of implanted neural electrodes is crucial for stimulation safety and the recording quality of neuronal activity.This paper proposes a novel surface architecture and optimization strategy for the platinum–iridium(Pt–Ir)electrode to optimize electrochemical performance and wettability.A series of surface micro/nano structures were fabricated on Pt–Ir electrodes with different combinations of four adjustable laser-processing parameters.Subsequently,the electrodes were characterized by scanning electron microscopy,energy-dispersive X-ray spectroscopy,cyclic voltammetry,electrochemical impedance spectroscopy,and wetting behavior.The results show that electrode performance strongly depends on the surface morphology.Increasing scanning overlap along with moderate pulse energy and the right number of pulses leads to enriched surface micro/nano structures and improved electrode performance.It raises the maximum charge storage capacity to 128.2 mC/cm^(2) and the interface capacitance of electrodes to 3.0×10^(4)μF/cm^(2) for the geometric area,compared with 4.6 mC/cm^(2) and 443.1μF/cm2,respectively,for the smooth Pt–Ir electrode.The corresponding optimal results for the optically measured area are 111.8 mC/cm^(2) and 2.6×10^(4)μF/cm^(2),which indicate the contribution of fner structures to the ablation profle.The hierarchical structures formed by the femtosecond laser dramatically enhanced the wettability of the electrode interface,giving it superwicking properties.A wicking speed of approximately 80 mm/s was reached.Our optimization strategy,leading to superior performance of the superwicking Pt–Ir interface,is promising for use in new neural electrodes.
基金the NationalKey Research and Development Procedure of China (Grant 2017YFB1103900)National Natural Science Foundation of China (Grants 11672153.11232008, 11227801).
文摘Thermal barrier coatings (TBCs) are widely applied in thermal components to protect metallic components. Owing to the complex layered structure of TBCs and difficult preparation of coating, the mechanical characterization of TBCs should be of primary importance. With regard to TBCs, this study deals with the constitutive parameters identification of bi-material. Considering the complex construction and boundary of bi material, the virtual fields method (VFM) was employed in this study. A methodology based on the optimized virtual fields method combined with moire interferometry was proposed for the constitutive parameters identification of bi-material. The feasibility of this method is verified using simulated deformation fields of a two-layer material subjected to three point ben ding loading. As an application, the deformation fields of the TBC specimens were measured by moire interferometry. Then, lhe mechanical parameters of the coating were identified by the proposed method. The identification results indicate that Young's modulus of the TBC top coating is 89.91 GPa, and its Poisson's ratio is 0.23.
基金support from the Natural Science Funds for Distinguished Young Scholar of Heilongjiang Province(No.JC2018004).
文摘Electrocatalytic synthesis of urea through C-N bond formation,converting carbon dioxide(CO_(2))and ni-trate(NO_(3)^(-)),presents a promising,less energy-intensive alternative to industrial urea production process.In this communication,we report the application of Mo_(2)C nanosheets-decorated carbon sheets(Mo_(2)C/C)as a highly efficient electrocatalyst for facilitating C-N coupling in ambient urea electrosynthesis.In CO_(2)-saturated 0.2 mol/L Na_(2)SO_(4)solution containing 0.05 mol/L NO_(3)^(-),the Mo_(2)C/C catalyst achieves an impres-sive urea yield of 579.13μg h^(-1)mg^(-1)with high Faradaic efficiency of 44.80%at-0.5 V versus the reversible hydrogen electrode.Further theoretical calculations reveal that the multiple Mo active sites enhance the formation of^(∗)CO and^(∗)NH_(2)intermediates and facilitate their C-N coupling.This research propels the use of Mo_(2)C-based electrodes in electrocatalysis and accentuates the capabilities of binary metal-based catalysts in C-N coupling reactions.
基金supported by the National Key Research and Development Program of China(2016YFC0105502)the National Natural Science Foundation of China(81527901,61901243,and 51777115)。
文摘Last July, a "breakthrough" in the fields of brain implants and brain-computer interfaces has leaped to the public’s eyes from Elon Musk and Neuralink. They published a brain-machine interface platform which consists of a group of flexible arrays for sensing, a neurosurgical robot for localization, and an electronic chip for low-power data acquisition [1]. The platform has been validated in rats and the implanted electrodes have successfully detected thousands of channels of neural spikes.
基金supported by the National Natural Science Foundation for Distinguished Young Scholars (51125028)Key Technologies R&D Program of China (2011BAI12B07 and 2012BAI16B01)
文摘Carbon nanotube yarns(CNTY)possess good specific strength and specific conductivity.As such,their potential for commercial applications is significant.Fatigue performance is a significant consideration in yarn/wire applications.In this study,the flexural fatigue performance of CNTY spun from super-aligned carbon nanotube arrays was investigated using a reversed bending test.The results showed that CNTY exhibited excellent resistance to pure flexural fatigue,significantly outperforming stainless steel wire;CNTY failed where a combination of flexural fatigue and tension–tension fatigue had special hollow fracture morphology,and CNTY resistance remained fundamentally unchanged in the combination fatigue process.
基金supported by the National Natural Science Foundation of China(51125028 and 51407103)Beijing Natural Science Foundation(7154214)Tsinghua University Initiative Scientific Research Program
文摘Humans have never stopped exploring their brains,one of the most complex systems in nature.A thorough understanding of the brain is the ultimate challenge for neuroscientists.As there is a rapid increase in the aging populations and the number of brain disorders,researchers are much more eager to clarify how the billions of
基金supported by the National Key Research and Development Program of China(2021YFC2400201)the National Natural Science Foundation of China(nos.51777115 and 81830033)+1 种基金the Tsinghua Precision Medicine Foundation(LC201906)the Shenzhen International Cooperative Research Project(GJHZ20180930110402104).
文摘Neural electrode interfaces are essential to the stimulation safety and recording quality of various bioelectronic therapies.The recently proposed hierarchical platinum-iridium(Pt-Ir)electrodes produced by femtosecond lasers have exhibited superior electrochemical performance in vitro,but their in vivo performance is still unclear.In this study,we explored the electrochemical performance,biological response,and tissue adhesion of hierarchical Pt-Ir electrodes by implantation in adult rat brains for 1,8,and 16 weeks.Regular smooth Pt-Ir electrodes were used as a control.The results showed that the electrochemical performance of both electrodes decreased and leveled off during implantation.However,after 16 weeks,the charge storage capacity of hierarchical electrodes stabilized at~16.8 mC/cm^(2),which was 15 times that of the smooth control electrodes(1.1 mC/cm^(2)).Moreover,the highly structured electrodes had lower impedance amplitude and cutoff frequency values.The similar histological response to smooth electrodes indicated good biocompatibility of the hierarchically structured Pt-Ir electrodes.Given their superior in vivo performance,the femtosecond laser-treated Pt-Ir electrode showed great potential for neuromodulation applications.
文摘This article provides a brief overview of the teaching and research at the School of Aerospace Engineering(SAE) to celebrate the 80 th anniversary of the establishment of aeronautics as a discipline at Tsinghua University. The evolution of the school, undergraduate/graduate students and faculty members, and research activities and achievements have been described. The research input including research funding and research projects are summarized, showing a diversity of funding sources and a significant growth in either sum total or spending per researcher. The achievements including publications and inter/national academic awards are also introduced. It can be seen that the level of academic publications has been growing over the past decades. In addition,four representative research achievements have been briefly described to show the scientific contributions of the school.