The marl–limestone rhythmic strata of the Permian Maokou Formation have been identified as hosts of unconventional gas reservoirs with “source–reservoir” integration. The lack of research on the pore structure evo...The marl–limestone rhythmic strata of the Permian Maokou Formation have been identified as hosts of unconventional gas reservoirs with “source–reservoir” integration. The lack of research on the pore structure evolution of organic-rich carbonate rock restricts gas exploration of these strata. Here, pyrolysis experiments were performed on the Mao-1 carbonate to simulate hydrocarbon generation, expulsion and diagenesis in gray marl from low maturity to overmaturity. The pore structure of this marl is dominated by mesopores and macropores, and the proportion of macropores increases gradually with temperature. The macropores are mainly pores in the organic matter and shrinkage microcracks. Additionally, micropores and mesopores, dominated by clay mineral interlayer pores and pyrite intergranular pores, are developed in the high mature stage and subsequently compressed in the overmature stage. The main contributors to the specific surface area are micropores and mesopores, which are conducive to natural gas adsorption. After the same pyrolysis treatment, the available porosity of grey marl is higher than that of marine/lacustrine shales, and exhibits an obvious decrease in the low mature–mature stage. These suggest that the abundant residual oil generated blocked the organic and inorganic pores in the gray marl, providing a pivotal material foundation for the gas generation. Micropores and mesopores developed during the high mature stage ensure the gas accumulation and preservation. The above indicate the organic-rich carbonate at the high mature–overmature stage (Ro = 1.7%–2.5%) in the Sichuan Basin may be a favorable exploration horizon for unconventional oil and gas.展开更多
Pyrolysis experiments were conducted on lacustrine organic-rich shale from Cangdong Sag in Bohai Bay Basin,China,to investigate the impact of hydrocarbon generation on shale pore structure evolution.Thermal evolution ...Pyrolysis experiments were conducted on lacustrine organic-rich shale from Cangdong Sag in Bohai Bay Basin,China,to investigate the impact of hydrocarbon generation on shale pore structure evolution.Thermal evolution is found to control the transformation of organic matter,hydrocarbon products characteristics,and pore structure changes.Furthermore,pore volume and specific surface area increase with increasing maturity.In low-mature stage,the retained oil content begins to increase,pore volumes show slight changes,and primary pores are occluded by the generated crude oil of high molecular weight and density.In the oil-window stage,the retained oil content rapidly increases and reaches maximum,and pore volumes gradually increase with increasing thermal maturity.At high mature stage,the retained oil content begins to decrease,and the pore volume increases considerably owing to the expulsion of liquid hydrocarbon.In over mature stage,natural gas content significantly increases and kerogen transforms to asphalt.Numerous organic pores are formed and the pore size gradually increases,resulting from the connection of organic pores caused the increasing thermal stress.This study lays a foundation for understanding variation of hydrocarbon products during the thermal evolution of lacustrine shales and its relationship with the evolution of shale reservoirs.展开更多
基金supported by the National Natural Science Foundation of China(42072156,U19B6003)the Open Foundation of Cooperative Innovation Center of Unconventional Oil and Gas,Yangtze University,China(No.UOG2022-18)。
文摘The marl–limestone rhythmic strata of the Permian Maokou Formation have been identified as hosts of unconventional gas reservoirs with “source–reservoir” integration. The lack of research on the pore structure evolution of organic-rich carbonate rock restricts gas exploration of these strata. Here, pyrolysis experiments were performed on the Mao-1 carbonate to simulate hydrocarbon generation, expulsion and diagenesis in gray marl from low maturity to overmaturity. The pore structure of this marl is dominated by mesopores and macropores, and the proportion of macropores increases gradually with temperature. The macropores are mainly pores in the organic matter and shrinkage microcracks. Additionally, micropores and mesopores, dominated by clay mineral interlayer pores and pyrite intergranular pores, are developed in the high mature stage and subsequently compressed in the overmature stage. The main contributors to the specific surface area are micropores and mesopores, which are conducive to natural gas adsorption. After the same pyrolysis treatment, the available porosity of grey marl is higher than that of marine/lacustrine shales, and exhibits an obvious decrease in the low mature–mature stage. These suggest that the abundant residual oil generated blocked the organic and inorganic pores in the gray marl, providing a pivotal material foundation for the gas generation. Micropores and mesopores developed during the high mature stage ensure the gas accumulation and preservation. The above indicate the organic-rich carbonate at the high mature–overmature stage (Ro = 1.7%–2.5%) in the Sichuan Basin may be a favorable exploration horizon for unconventional oil and gas.
基金supported by the National Natural Science Foundation of China(Grant Nos.42072150,41372144)the State Science and Technology Major Project of China(Grant No.2017ZX05049001-008)
文摘Pyrolysis experiments were conducted on lacustrine organic-rich shale from Cangdong Sag in Bohai Bay Basin,China,to investigate the impact of hydrocarbon generation on shale pore structure evolution.Thermal evolution is found to control the transformation of organic matter,hydrocarbon products characteristics,and pore structure changes.Furthermore,pore volume and specific surface area increase with increasing maturity.In low-mature stage,the retained oil content begins to increase,pore volumes show slight changes,and primary pores are occluded by the generated crude oil of high molecular weight and density.In the oil-window stage,the retained oil content rapidly increases and reaches maximum,and pore volumes gradually increase with increasing thermal maturity.At high mature stage,the retained oil content begins to decrease,and the pore volume increases considerably owing to the expulsion of liquid hydrocarbon.In over mature stage,natural gas content significantly increases and kerogen transforms to asphalt.Numerous organic pores are formed and the pore size gradually increases,resulting from the connection of organic pores caused the increasing thermal stress.This study lays a foundation for understanding variation of hydrocarbon products during the thermal evolution of lacustrine shales and its relationship with the evolution of shale reservoirs.