Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of...Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of R_(e)(Q_(10)).However,little is known about the patterns and controlling factors of Q_(10)on the plateau,impeding the comprehension of the intensity of terrestrial carbon-climate feedbacks for these sensitive and vulnerable ecosystems.Here,we synthesized and analyzed multiyear observations from 14 sites to systematically compare the spatiotemporal variations of Q_(10)values in diverse climate zones and ecosystems,and further explore the relationships between Q_(10)and environmental factors.Moreover,structural equation modeling was utilized to identify the direct and indirect factors predicting Q_(10)values during the annual,growing,and non-growing seasons.The results indicated that the estimated Q_(10)values were strongly dependent on temperature,generally,with the average Q_(10)during different time periods increasing with air temperature and soil temperature at different measurement depths(5 cm,10 cm,20 cm).The Q_(10)values differentiated among ecosystems and climatic zones,with warming-induced Q_(10)declines being stronger in colder regions than elsewhere based on spatial patterns.NDVI was the most cardinal factor in predicting annual Q_(10)values,significantly and positively correlated with Q_(10).Soil temperature(Ts)was identified as the other powerful predictor for Q_(10),and the negative Q_(10)-Ts relationship demonstrates a larger terrestrial carbon loss potentiality in colder than in warmer regions in response to global warming.Note that the interpretations of the effect of soil moisture on Q_(10)were complicated,reflected in a significant positive relationship between Q_(10)and soil moisture during the growing season and a strong quadratic correlation between the two during the annual and non-growing season.These findings are conducive to improving our understanding of alpine grassland ecosystem carbon-climate feedbacks under warming climates.展开更多
The simulation of soil temperature on the Tibetan Plateau(TP) plays a dominant role in the performance of both global climate and numerical weather forecast models. To improve the simulation of soil temperature on the...The simulation of soil temperature on the Tibetan Plateau(TP) plays a dominant role in the performance of both global climate and numerical weather forecast models. To improve the simulation of soil temperature on the TP, the Johansen soil thermal conductivity parameterization scheme was introduced into Community Land Model 3.5(CLM3.5) and Regional Climatic Model 4(Reg CM4). The improved CLM3.5 and Reg CM4-CLM were utilized to conduct offline and regional simulation experiments on the TP. Comparison of the new and old schemes revealed that CLM3.5 provides high thermal conductivity parameters of mineral soil solid on the TP. The Johansen scheme is more practical for the TP than the soil thermal conductivity parameterization in CLM3.5. The simulation of soil temperature and liquid water content was improved in offline experiment. The improved parameterization scheme can also reduce the simulation error of soil temperature in winter throughout the entire TP.展开更多
Understanding the energy balance on the Tibetan Plateau is important for better prediction of global climate change. To characterize the energy balance on the Plateau, we examined the radiation balance and the respons...Understanding the energy balance on the Tibetan Plateau is important for better prediction of global climate change. To characterize the energy balance on the Plateau, we examined the radiation balance and the response of albedo to environmental factors above an alpine meadow and an alpine wetland surfaces in the eastern Tibetan Plateau, using 2014 data. Although our two sites belong to the same climatic background, and are close geographically, the annual incident solar radiation at the alpine meadow site(6,447 MJ/(m2·a)) was about 1.1 times that at the alpine wetland site(6,012 MJ/(m2·a)),due to differences in the cloudiness between our two sites. The alpine meadow and the alpine wetland emitted about 38%and 42%, respectively, of annual incident solar radiation back into atmosphere in the form of net longwave radiation; and they reflected about 22% and 18%, respectively, of the annual incident solar radiation back into atmosphere in the form of shortwave radiation. The annual net radiation was 2,648 and 2,544 MJ/(m2·a) for the alpine meadow site and the alpine wetland site, respectively, accounting for only about 40% of the annual incident solar radiation, significantly lower than the global mean. At 30-min scales, surface albedo exponentially decreases with the increase of the solar elevation angle; and it linearly decreases with the increase of soil-water content for our two sites. But those relationships are significantly influenced by cloudiness and are site-specific.展开更多
Thousands of lakes on the Tibetan Plateau(TP) play a critical role in the regional water cycle, weather, and climate. In recent years, the areas of TP lakes underwent drastic changes and have become a research hotspot...Thousands of lakes on the Tibetan Plateau(TP) play a critical role in the regional water cycle, weather, and climate. In recent years, the areas of TP lakes underwent drastic changes and have become a research hotspot. However, the characteristics of the lake-atmosphere interaction over the high-altitude lakes are still unclear, which inhibits model development and the accurate simulation of lake climate effects. The source region of the Yellow River(SRYR) has the largest outflow lake and freshwater lake on the TP and is one of the most densely distributed lakes on the TP. Since 2011,three observation sites have been set up in the Ngoring Lake basin in the SRYR to monitor the lake-atmosphere interaction and the differences among water-heat exchanges over the land and lake surfaces. This study presents an eight-year(2012–19), half-hourly, observation-based dataset related to lake–atmosphere interactions composed of three sites. The three sites represent the lake surface, the lakeside, and the land. The observations contain the basic meteorological elements,surface radiation, eddy covariance system, soil temperature, and moisture(for land). Information related to the sites and instruments, the continuity and completeness of data, and the differences among the observational results at different sites are described in this study. These data have been used in the previous study to reveal a few energy and water exchange characteristics of TP lakes and to validate and improve the lake and land surface model. The dataset is available at National Cryosphere Desert Data Center and Science Data Bank.展开更多
Based on the Monin-Obulchov similarity theory, a scheme was developed to calculate surface roughness length. Surface roughness length over the eastern Qinghai-Tibetan Plateau during the winter season was then estimate...Based on the Monin-Obulchov similarity theory, a scheme was developed to calculate surface roughness length. Surface roughness length over the eastern Qinghai-Tibetan Plateau during the winter season was then estimated using the scheme and eddy covariance measurement data. Comparisons of estimated and measured wind speeds show that the scheme is feasible to calculate surface roughness length. The estimated roughness lengths at the measurement site during unfrozen, frozen and melted periods are 3.23x10(-3), 2.27x10(-3) and 1.92x10(-3) m, respectively. Surface roughness length demonstrates a deceasing trend with time during the winter season. Thereby, setting the roughness length to be a constant value in numerical models could lead to certain degree of simulation errors. The variation of surface roughness length may be caused by the change in land surface characteristic.展开更多
基金supported by the National Science Foundation of China(Grant No.41930759)the Gansu Provincial Science and Technology Program(Grant No.22ZD6FA005)+4 种基金the National Science Foundation of China(Grant Nos.41875018 and 41875016)the Science and Technology Research Plan of Gansu Province(Grant Nos.20JR10RA070 and 22JR5RA048)the Chinese Academy of Sciences(CAS)“Light of West China”Program(Grant No.E2290302)the Gansu Provincial Science and Technology Program(Grant No.23JRRA609)the integrated Land Ecosystem-Atmosphere Processes Study(iLEAPS).
文摘Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of R_(e)(Q_(10)).However,little is known about the patterns and controlling factors of Q_(10)on the plateau,impeding the comprehension of the intensity of terrestrial carbon-climate feedbacks for these sensitive and vulnerable ecosystems.Here,we synthesized and analyzed multiyear observations from 14 sites to systematically compare the spatiotemporal variations of Q_(10)values in diverse climate zones and ecosystems,and further explore the relationships between Q_(10)and environmental factors.Moreover,structural equation modeling was utilized to identify the direct and indirect factors predicting Q_(10)values during the annual,growing,and non-growing seasons.The results indicated that the estimated Q_(10)values were strongly dependent on temperature,generally,with the average Q_(10)during different time periods increasing with air temperature and soil temperature at different measurement depths(5 cm,10 cm,20 cm).The Q_(10)values differentiated among ecosystems and climatic zones,with warming-induced Q_(10)declines being stronger in colder regions than elsewhere based on spatial patterns.NDVI was the most cardinal factor in predicting annual Q_(10)values,significantly and positively correlated with Q_(10).Soil temperature(Ts)was identified as the other powerful predictor for Q_(10),and the negative Q_(10)-Ts relationship demonstrates a larger terrestrial carbon loss potentiality in colder than in warmer regions in response to global warming.Note that the interpretations of the effect of soil moisture on Q_(10)were complicated,reflected in a significant positive relationship between Q_(10)and soil moisture during the growing season and a strong quadratic correlation between the two during the annual and non-growing season.These findings are conducive to improving our understanding of alpine grassland ecosystem carbon-climate feedbacks under warming climates.
基金supported by the National Natural Science Foundation of China(91537104,41375077,41775016,41405015,and 41405016)
文摘The simulation of soil temperature on the Tibetan Plateau(TP) plays a dominant role in the performance of both global climate and numerical weather forecast models. To improve the simulation of soil temperature on the TP, the Johansen soil thermal conductivity parameterization scheme was introduced into Community Land Model 3.5(CLM3.5) and Regional Climatic Model 4(Reg CM4). The improved CLM3.5 and Reg CM4-CLM were utilized to conduct offline and regional simulation experiments on the TP. Comparison of the new and old schemes revealed that CLM3.5 provides high thermal conductivity parameters of mineral soil solid on the TP. The Johansen scheme is more practical for the TP than the soil thermal conductivity parameterization in CLM3.5. The simulation of soil temperature and liquid water content was improved in offline experiment. The improved parameterization scheme can also reduce the simulation error of soil temperature in winter throughout the entire TP.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91537106, 41405016, 41275016, 91537104, and 41605011)
文摘Understanding the energy balance on the Tibetan Plateau is important for better prediction of global climate change. To characterize the energy balance on the Plateau, we examined the radiation balance and the response of albedo to environmental factors above an alpine meadow and an alpine wetland surfaces in the eastern Tibetan Plateau, using 2014 data. Although our two sites belong to the same climatic background, and are close geographically, the annual incident solar radiation at the alpine meadow site(6,447 MJ/(m2·a)) was about 1.1 times that at the alpine wetland site(6,012 MJ/(m2·a)),due to differences in the cloudiness between our two sites. The alpine meadow and the alpine wetland emitted about 38%and 42%, respectively, of annual incident solar radiation back into atmosphere in the form of net longwave radiation; and they reflected about 22% and 18%, respectively, of the annual incident solar radiation back into atmosphere in the form of shortwave radiation. The annual net radiation was 2,648 and 2,544 MJ/(m2·a) for the alpine meadow site and the alpine wetland site, respectively, accounting for only about 40% of the annual incident solar radiation, significantly lower than the global mean. At 30-min scales, surface albedo exponentially decreases with the increase of the solar elevation angle; and it linearly decreases with the increase of soil-water content for our two sites. But those relationships are significantly influenced by cloudiness and are site-specific.
基金supported by the National Natural Science Foundations of China (Grant Nos. 41930759, 41822501, 42075089, 41975014)the 2nd Scientific Expedition to the Qinghai-Tibet Plateau (2019QZKK0102)+3 种基金The Science and Technology Research Plan of Gansu Province (20JR10RA070)the Chinese Academy of Youth Innovation and Promotion, CAS (Y201874)the Youth Innovation Promotion Association CAS (QCH2019004)iLEAPs (Integrated Land Ecosystem-Atmosphere Processes Study-iLEAPS)。
文摘Thousands of lakes on the Tibetan Plateau(TP) play a critical role in the regional water cycle, weather, and climate. In recent years, the areas of TP lakes underwent drastic changes and have become a research hotspot. However, the characteristics of the lake-atmosphere interaction over the high-altitude lakes are still unclear, which inhibits model development and the accurate simulation of lake climate effects. The source region of the Yellow River(SRYR) has the largest outflow lake and freshwater lake on the TP and is one of the most densely distributed lakes on the TP. Since 2011,three observation sites have been set up in the Ngoring Lake basin in the SRYR to monitor the lake-atmosphere interaction and the differences among water-heat exchanges over the land and lake surfaces. This study presents an eight-year(2012–19), half-hourly, observation-based dataset related to lake–atmosphere interactions composed of three sites. The three sites represent the lake surface, the lakeside, and the land. The observations contain the basic meteorological elements,surface radiation, eddy covariance system, soil temperature, and moisture(for land). Information related to the sites and instruments, the continuity and completeness of data, and the differences among the observational results at different sites are described in this study. These data have been used in the previous study to reveal a few energy and water exchange characteristics of TP lakes and to validate and improve the lake and land surface model. The dataset is available at National Cryosphere Desert Data Center and Science Data Bank.
基金supported by the National Natural Science Foundation of China (41275016, 41405016, 41205006, 41275014, 41375077, 91537104, and 91537106)
文摘Based on the Monin-Obulchov similarity theory, a scheme was developed to calculate surface roughness length. Surface roughness length over the eastern Qinghai-Tibetan Plateau during the winter season was then estimated using the scheme and eddy covariance measurement data. Comparisons of estimated and measured wind speeds show that the scheme is feasible to calculate surface roughness length. The estimated roughness lengths at the measurement site during unfrozen, frozen and melted periods are 3.23x10(-3), 2.27x10(-3) and 1.92x10(-3) m, respectively. Surface roughness length demonstrates a deceasing trend with time during the winter season. Thereby, setting the roughness length to be a constant value in numerical models could lead to certain degree of simulation errors. The variation of surface roughness length may be caused by the change in land surface characteristic.