The measurements of the streaming potential coefficient and the zeta potential of two consolidated samples saturated with four monovalent electrolytes at different electrolyte concentrations have been performed. The e...The measurements of the streaming potential coefficient and the zeta potential of two consolidated samples saturated with four monovalent electrolytes at different electrolyte concentrations have been performed. The experimental results show that the streaming potential coefficient and the zeta potential in magnitude both decrease with increasing electrolyte concentration for all electrolytes. It is also shown that there is a dependence of the streaming potential coefficient on types of electrolyte for a given sample. This is explained by the dependence of the zeta potential and the electrical conductivity on types of electrolyte. Additionally, the variation of the zeta potential with types of electrolyte is also reported and qualitatively explained. From experimental data on the streaming potential coefficient and the zeta potential, the empirical expressions between the streaming potential coefficients, the zeta potential and electrolyte concentration are also obtained. The obtained expressions have the similar forms to those available in literature. However, there is a deviation between them due to dissimilarities of fluid conductivity, fluid pH, mineral composition of porous materials and temperature.展开更多
文摘The measurements of the streaming potential coefficient and the zeta potential of two consolidated samples saturated with four monovalent electrolytes at different electrolyte concentrations have been performed. The experimental results show that the streaming potential coefficient and the zeta potential in magnitude both decrease with increasing electrolyte concentration for all electrolytes. It is also shown that there is a dependence of the streaming potential coefficient on types of electrolyte for a given sample. This is explained by the dependence of the zeta potential and the electrical conductivity on types of electrolyte. Additionally, the variation of the zeta potential with types of electrolyte is also reported and qualitatively explained. From experimental data on the streaming potential coefficient and the zeta potential, the empirical expressions between the streaming potential coefficients, the zeta potential and electrolyte concentration are also obtained. The obtained expressions have the similar forms to those available in literature. However, there is a deviation between them due to dissimilarities of fluid conductivity, fluid pH, mineral composition of porous materials and temperature.