期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Crystallization Regulation and Morphological Evolution for HTM-free Tin-Lead (1.28eV) Alloyed Perovskite Solar Cells
1
作者 Hang Hu Xianyong Zhou +13 位作者 Jiabang Chen Deng Wang Dongyang Li Yulan Huang luozheng zhang Yuanjun Peng Feng Wang Jingxia Huang Naichao Chen Liang Sun Xuesong Liu Xingzhu Wang Jianyong Ouyang Baomin Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期113-119,共7页
There have been huge achievements of all-perovskite tandem solar cells,which recently realized the highest power conversion efficiency of 24.8%.However,the complex device structure and complicated manufacture processe... There have been huge achievements of all-perovskite tandem solar cells,which recently realized the highest power conversion efficiency of 24.8%.However,the complex device structure and complicated manufacture processes severely restrict the further development of all-perovskite tandem solar cells.In this work,we successfully fabricated high-efficiency hole transport material-free(HTM-free)Sn−Pb alloyed narrow bandgap perovskite solar cells(PSCs)by introducing guanidinium thiocyanate(GASCN)and hydroiodic acid(HI)into the perovskite precursor solution.GASCN and HI play a positive synergy effect during perovskite crystallization process resulting in larger grain size,fewer surface defects,and lower trap density to suppress the Sn^(2+)oxidation degradation.Furthermore,they could effectively adjust the energy level of perovskite materials,reduce the energy level difference between perovskite and ITO resulting in more efficiently transport of free hole charge carriers.As a result,with adding GASCN and HI,the achieved highest power conversion efficiency of HTM-free devices increased from 12.58%to 17.85%,which is one of the highest PCEs among all values reported to date for the HTM-free narrow-bandgap(1.2-1.4 eV)Sn−Pb binary PSCs.Moreover,the optimized device shows improved environmental stability.Our additive strategy manifests a remarkable step towards the facile,cost-efficient fabrication of HTM-free perovskite-based tandem solar cells with both high efficiency and simple fabrication process. 展开更多
关键词 crystallization regulation hole transport layer-free mixed tin-lead narrow bandgap perovskite solar cells
下载PDF
Recent progress in perovskite solar cells:material science 被引量:6
2
作者 Jiang-Yang Shao Dongmei Li +24 位作者 Jiangjian Shi Chuang Ma Yousheng Wang Xiaomin Liu Xianyuan Jiang Mengmeng Hao luozheng zhang Chang Liu Yiting Jiang Zhenhan Wang Yu-Wu Zhong Shengzhong(Frank)Liu Yaohua Mai Yongsheng Liu Yixin Zhao Zhijun Ning Lianzhou Wang Baomin Xu Lei Meng Zuqiang Bian Ziyi Ge Xiaowei Zhan Jingbi You Yongfang Li Qingbo Meng 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第1期10-64,共55页
Perovskite solar cells represent a promising third-generation photovoltaic technology with low fabrication cost and high power conversion efficiency.In light of the rapid development of perovskite materials and device... Perovskite solar cells represent a promising third-generation photovoltaic technology with low fabrication cost and high power conversion efficiency.In light of the rapid development of perovskite materials and devices,a systematic survey on the latest advancements covering a broad range of related work is urgently needed.This review summarizes the recent major advances in the research of perovskite solar cells from a material science perspective.The discussed topics include the devices based on different type of perovskites(organic-inorganic hybrid,all-inorganic,and lead-free perovskite and perovskite quantum dots),the properties of perovskite defects,different type of charge transport materials(organic,polymeric,and inorganic hole transport materials and inorganic and organic electron transport materials),counter electrodes,and interfacial materials used to improve the efficiency and stability of devices.Most discussions focus on the key progresses reported within the recent five years.Meanwhile,the major issues limiting the production of perovskite solar cells and the prospects for the future development of related materials are discussed. 展开更多
关键词 perovskite solar cells power conversion efficiency perovskite materials hole transport materials electron transport materials counter electrode materials interfacial functional materials DEFECTS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部