期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fabrication and catalytic performance of meso-ZSM-5 zeolite encapsulated ferric oxide nanoparticles for phenol hydroxylation
1
作者 Zhenheng Diao lushi cheng +3 位作者 Wen Guo Xu Hou Pengfei Zheng Qiuyueming Zhou 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2021年第3期643-653,共11页
An encapsulation-structured Fe_(2)O_(3)@mesoZSM-5(Fe@MZ5)was fabricated by confining Fe_(2)O_(3) nanoparticles(ca.4 nm)within the ordered mesopores of hierarchical ZSM-5 zeolite(meso-ZSM-5),with ferric oleate and amph... An encapsulation-structured Fe_(2)O_(3)@mesoZSM-5(Fe@MZ5)was fabricated by confining Fe_(2)O_(3) nanoparticles(ca.4 nm)within the ordered mesopores of hierarchical ZSM-5 zeolite(meso-ZSM-5),with ferric oleate and amphiphilic organosilane as the iron source and meso-porogen,respectively.For comparison,catalysts with Fe_(2)O_(3)(ca.12 nm)encapsulated in intra-crystal holes of meso-ZSM-5 and with MCM-41 or ZSM-5 phase as the shell were also prepared via sequential desilication and recrystallization at different pH values and temperatures.Catalytic phenol hydroxylation performance of the as-prepared catalysts using H_(2)O_(2) as oxidant was compared.Among the encapsulation-structured catalysts,Fe@MZ5 showed the highest phenol conversion and hydroquinone selectivity,which were enhanced by two times compared to the Fe-oxide impregnated ZSM-5(Fe/Z5).Moreover,the Fe-leaching amount of Fe@MZ5 was only 3% of that for Fe/Z5.The influence of reaction parameters,reusability,and ·OH scavenging ability of the catalysts were also investigated.Based on the above results,the structure-performance relationship of these new catalysts was preliminarily described. 展开更多
关键词 phenol hydroxylation encapsulation structure structure-performance relationship meso-ZSM-5 ferric oxide
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部