期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Evaluating alternative hypotheses behind biodiversity and multifunctionality relationships in the forests of Northeastern China 被引量:2
1
作者 Qingmin Yue Minhui Hao +5 位作者 Yan Geng Xuerui Wang Klaus von Gadow Chunyu Zhang Xiuhai Zhao lushuang gao 《Forest Ecosystems》 SCIE CSCD 2022年第3期301-310,共10页
Background:The importance of biodiversity in maintaining multiple ecosystem functions has been widely accepted.However,the specific mechanisms affecting biodiversity and ecosystem multifunctionality(BEMF)relationships... Background:The importance of biodiversity in maintaining multiple ecosystem functions has been widely accepted.However,the specific mechanisms affecting biodiversity and ecosystem multifunctionality(BEMF)relationships in forests are largely unknown.This is particularly evident for the macroscale of a large forested landscape.Methods:Based on 412 one-tenth hectare field plots distributed over forested areas across northeastern China,we evaluated three alternative hypotheses explaining the relationships between BEMF,namely:niche complementarity,mass ratio,and vegetation quantity effect.We used Rao's quadratic entropy and community weighted mean trait values to quantify forest“biodiversity”.These two variables represent two complementary aspects of functional properties,which are in line with niche complementary and mass ratio effects,respectively.Results:Ecosystem multifunctionality was negatively associated with the community weighted mean values of acquisitive traits(a proxy of mass ratio effect).Rao's quadratic entropy(a proxy of niche complementarity)had no relationship with ecosystem multifunctionality.Higher stand biomass greatly increased ecosystem multifunctionality,which is in line with the vegetation quantity effect.Our results confirm that in the temperate forests of northeastern China,the relationship of BEMF was primarily affected by vegetation quantity,followed by mass ratio effects.Conclusions:The results of this study contribute to a better understanding of the main drivers of ecosystem multifunctionality in forest ecosystems.The results of this study provide additional evidence to support the vegetation quantity and mass ratio hypotheses in forest ecosystems. 展开更多
关键词 Biodiversity and ecosystem multifunctionality Biomass Functional traits Mass ratio effect Niche complementarity effect Vegetation quantity effect
下载PDF
Drivers of tree demographic trade-offs in a temperate forest 被引量:1
2
作者 Jianghuan Qin Chunyu Fan +3 位作者 Yan Geng Chunyu Zhang Xiuhai Zhao lushuang gao 《Forest Ecosystems》 SCIE CSCD 2022年第4期475-482,共8页
Background: The demographic trade-offs(i.e. growth and survival) play important roles in forest dynamics and they are driven by multiple factors, including species’ inherent life-history strategies(such as shade-tole... Background: The demographic trade-offs(i.e. growth and survival) play important roles in forest dynamics and they are driven by multiple factors, including species’ inherent life-history strategies(such as shade-tolerance and mycorrhizal type), neighborhood interactions(such as conspecific negative density dependence, CNDD), and abiotic environment pressures. Although studies found that CNDD occurred in tropical and temperate forest,attempts to identify how the variations in CNDD control their impacts on growth and survival remain debate. In the present study, we conducted an extensive field survey, and analyzed demographic rates from 24 co-occurring temperate tree species, in order to test the importance of CNDD in shaping the growth-survival trade-offs.Results: Our study found that density dependence and environmental filtering were strong predictors for individual growth-survival trade-offs, while they showed variations across shade-intolerant and ectomycorrhizal species, as well as saplings and juveniles with more negative CNDD. Species growth showed positive relationship with mortality. And our results also support the fact that CNDD drives species growth-survival trade-offs at the community level with environmental stress.Conclusions: Our study indicates that biotic interactions such as density dependence and environment filtering played an important role in growth-survival trade-offs, and confirmed that the Janzen-Connell hypothesis in temperate forest was associated with species life-history strategies. In addition, shade-tolerance, mycorrhizal type and life-stage of forest species responded differently to CNDD, thus providing insights regarding different community assembly mechanisms and their interactions. Therefore, it is important to take species survival with growth and species life-history strategies into account when focusing on forest dynamics. 展开更多
关键词 Tree survival Density dependence Growth-survival trade-offs Life-history strategy Temperate forest
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部