期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
带深井位势双调和方程的解 被引量:2
1
作者 郭玉霞 唐仲伟 汪路顺 《中国科学:数学》 CSCD 北大核心 2019年第1期21-38,共18页
本文研究下述双调和方程极小能量解的存在性:?~2u+[λV (x)-δ]u=|u|_(p-2)u, x∈R^N,(0.1)其中N≥5,λ> 0. p是次临界或临界的Sobolev指标,即2 <p≤2**,这里2**=2N/N-4为临界的Sobolev指标, V (x)是非负连续的深井位势,其零集V^(... 本文研究下述双调和方程极小能量解的存在性:?~2u+[λV (x)-δ]u=|u|_(p-2)u, x∈R^N,(0.1)其中N≥5,λ> 0. p是次临界或临界的Sobolev指标,即2 <p≤2**,这里2**=2N/N-4为临界的Sobolev指标, V (x)是非负连续的深井位势,其零集V^(-1)(0):={x∈R^N:V (x)=0}的内部int V^(-1)(0)是R^N中非空的有界光滑区域.令μ0为定义在int V^(-1)(0)中齐次边界条件下?~2的第一特征值.对任意的0 <δ<μ0,本文证明:当λ> 0充分大时,(0.1)存在一个在V^(-1)(0)附近的极小能量解. 展开更多
关键词 极小能量解 双调和方程 深井位势
原文传递
Number of synchronized and segregated interior spike solutions for nonlinear coupled elliptic systems with continuous potentials
2
作者 lushun wang 《Science China Mathematics》 SCIE CSCD 2019年第3期509-534,共26页
In this paper, we consider the following nonlinear coupled elliptic systems with continuous potentials:{-ε~2?u +(1 + δP(x))u = μ1 u^3+ βuv^2 in ?,-ε~2?v +(1 + δQ(x))v = μ2 v^3+ βu^2 v in ?,u > 0, v > 0 i... In this paper, we consider the following nonlinear coupled elliptic systems with continuous potentials:{-ε~2?u +(1 + δP(x))u = μ1 u^3+ βuv^2 in ?,-ε~2?v +(1 + δQ(x))v = μ2 v^3+ βu^2 v in ?,u > 0, v > 0 in ?,(?u)/(?v)=(?ν)/(?ν)=0on ??,(A_ε)where ? is a smooth bounded domain in R^N for N = 2, 3, δ, ε, μ_1 and μ_2 are positive parameters, β∈ R,P(x) and Q(x) are two smooth potentials defined on ?, the closure of ?. Due to Liapunov-Schmidt reduction method, we prove that(A_ε) has at least O(1/(ε| ln ε|)~N) synchronized and O(1/(ε| ln ε|)^(2 N)) segregated vector solutions for ε and δ small enough and some β∈ R. Moreover, for each m ∈(0, N) there exist synchronized and segregated vector solutions for(A_ε) with energies in the order of ε^(N-m). Our results extend the result of Lin et al.(2007) from the Lin-Ni-Takagi problem to the nonlinear Schr¨odinger elliptic systems with continuous potentials. 展开更多
关键词 NONLINEAR COUPLED ELLIPTIC system Liapunov-Schmidt reduction methods synchronized and segregated VECTOR solutions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部