LZ91 Mg-Li alloy plates with three types of initial texture were rolled by 70%reduction at both room temperature and 200℃to explore the rolling texture formation ofα-Mg phase.The results showed that the rolling text...LZ91 Mg-Li alloy plates with three types of initial texture were rolled by 70%reduction at both room temperature and 200℃to explore the rolling texture formation ofα-Mg phase.The results showed that the rolling texture is largely affected by the initial texture.All the samples exhibited two main texture components as RD-split double peaks texture and TD-split double peaks texture after large strain rolling.The intensity of the two texture components was strongly influenced by the initial orientation and rolling temperature.Extension twinning altered the large-split non-basal orientation to a near basal one at low rolling strain.The basal orientation induced by twinning is unstable,which finally transmitted to the RD-split texture.The strong TD-split texture formed due to slip-induced orientation transition from its initial orientation.The competition between prismatic and basal slip determined the intensity and tilt angle of the TD-split texture.By increasing the rolling temperature,the TD-split texture component was enhanced in all three samples.Limitation of extension twinning behavior and the promotion of prismatic slip at elevated temperature are the main reasons for the difference in hot and cold rolling texture.展开更多
Dual-phase Mg-Li alloys sheets were rolled at four different temperatures ranging from liquid nitrogen to 300℃to explore effect of rolling temperature on texture and mechanical properties of the material.Crystal plas...Dual-phase Mg-Li alloys sheets were rolled at four different temperatures ranging from liquid nitrogen to 300℃to explore effect of rolling temperature on texture and mechanical properties of the material.Crystal plasticity simulation was utilized to illustrate the influence of slip activity on rolling texture development.The results show that the rolling texture is largely depended on deformation temperature.Unlike commercial Mg alloys,the critical resolved shear stress of basal slip inα-Mg phase of Mg-Li alloy decreased more significantly by increasing temperature compared to that of pyramidal<c+a>slip.Enhancement of basal slip by increasing temperature triggered a decrease of split angle of basal poles for the double-peak texture.Prismaticslip largely enhanced by increasing temperature upon 200℃,which induced a wider orientation spread along the transverse direction.For theβ-Li phase,the promotion of{110}<111>slip system at elevated temperature triggered the enhancement of{211}<110>and{111}<211>texture components.The cryo-rolled sample exhibited the highest strength compared to the others due to a strong hardening behavior at this temperature.A two-stage hardening behavior was observed in these as-rolled dual-phase alloys.Strain transition at phase boundaries could be the reason for appearance of this two-stage hardening.展开更多
The contribution of recrystallization and grain growth to the texture evolution in AZ31 alloy and a modified version AZ31+0.5 wt.%Ca was investigated utilizing a multi-step annealing process.The results showed that th...The contribution of recrystallization and grain growth to the texture evolution in AZ31 alloy and a modified version AZ31+0.5 wt.%Ca was investigated utilizing a multi-step annealing process.The results showed that the addition of Ca triggered a considerable texture modification by increasing the texture spread and decreasing the overall texture intensity.This effect was found to be temperature dependent.When the annealing temperature remained lower than 450℃,a weak double peak texture with large basal pole tilt towards the RD was formed.This is correlated to microstructure observations of a large number of Ca-containing nano-sized particles that seemed to suppress grain growth below 450℃,which stabilized the weak recrystallization texture.This favorable texture was lost upon annealing at higher temperatures.In AZ31,recrystallization nuclei were found to preserve the orientation of their deformed parents,which offered limited potential to optimize the texture via annealing treatments.Grain growth of recrystallized grains resulted in a distinct sheet texture transition from a double-peak to a single-peak basal texture.Aspects of grain boundary energy and grain topology are discussed to explain the growth advantage of the sharp basal component over other orientations.展开更多
Preheating is the first step for thermal-mechanical processing of the materials. Several preheating schedules were designed based on industrial manufacturing to explore their effect on the microstructure and mechanica...Preheating is the first step for thermal-mechanical processing of the materials. Several preheating schedules were designed based on industrial manufacturing to explore their effect on the microstructure and mechanical properties of AA2099 Al-Li alloy during the following hot rolling. The results show that the mechanical properties of as-rolled sheets are quite sensitive to preheating. Various types of secondary phases, including δ', T1 and T2 phases, were precipitated during the heating process. The difference among precipitates is the main reason to induce the variation of mechanical properties for as-rolled sheets. A rapid heating rate gave rise to the precipitation of δ' phase, which largely promoted yield stress and ultimate tensile strength in as-rolled sheets. T1 phase was more favorable in the preheating with a holding period at 150–250 °C, which caused a moderated strain hardening behavior. Precipitates formed during preheating induced different slip behaviors in the following deformation. The coexistence of T1 and δ' phase could restrict planar slip, which inhibited the formation of the shear band. The difference in the activity of non-octahedral slips and planar slips determined the strain hardening effect, which should be the reason for the variation of mechanical properties of as-rolled sheets.展开更多
基金supported by Research Program of Chongqing Municipal Education Commission(KJQN201901127)University Innovation Research Group of Chongqing(CXQT20023)+2 种基金Natural Science Foundation of Chongqing(cstc2021ycjh-bgzxm0184)support by the Research Program of Chongqing Municipal Education Commission(KJQN202201151)National Natural Science Foundation of China(52201107).
文摘LZ91 Mg-Li alloy plates with three types of initial texture were rolled by 70%reduction at both room temperature and 200℃to explore the rolling texture formation ofα-Mg phase.The results showed that the rolling texture is largely affected by the initial texture.All the samples exhibited two main texture components as RD-split double peaks texture and TD-split double peaks texture after large strain rolling.The intensity of the two texture components was strongly influenced by the initial orientation and rolling temperature.Extension twinning altered the large-split non-basal orientation to a near basal one at low rolling strain.The basal orientation induced by twinning is unstable,which finally transmitted to the RD-split texture.The strong TD-split texture formed due to slip-induced orientation transition from its initial orientation.The competition between prismatic and basal slip determined the intensity and tilt angle of the TD-split texture.By increasing the rolling temperature,the TD-split texture component was enhanced in all three samples.Limitation of extension twinning behavior and the promotion of prismatic slip at elevated temperature are the main reasons for the difference in hot and cold rolling texture.
基金F.Guo thanks for the support of Chongqing Research Program of Basic Research and Frontier Technology Scientific Research(cstc2019jcyj-msxmX0111)University Innovation Research Group of Chongqing(CXQT20023)+1 种基金Scientific Research Foundation of Chongqing University of Technology(2017ZD35)L.Y.Jiang is sponsored by Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN201901127).
文摘Dual-phase Mg-Li alloys sheets were rolled at four different temperatures ranging from liquid nitrogen to 300℃to explore effect of rolling temperature on texture and mechanical properties of the material.Crystal plasticity simulation was utilized to illustrate the influence of slip activity on rolling texture development.The results show that the rolling texture is largely depended on deformation temperature.Unlike commercial Mg alloys,the critical resolved shear stress of basal slip inα-Mg phase of Mg-Li alloy decreased more significantly by increasing temperature compared to that of pyramidal<c+a>slip.Enhancement of basal slip by increasing temperature triggered a decrease of split angle of basal poles for the double-peak texture.Prismaticslip largely enhanced by increasing temperature upon 200℃,which induced a wider orientation spread along the transverse direction.For theβ-Li phase,the promotion of{110}<111>slip system at elevated temperature triggered the enhancement of{211}<110>and{111}<211>texture components.The cryo-rolled sample exhibited the highest strength compared to the others due to a strong hardening behavior at this temperature.A two-stage hardening behavior was observed in these as-rolled dual-phase alloys.Strain transition at phase boundaries could be the reason for appearance of this two-stage hardening.
基金F.Guo and R.S.Pei are grateful for financial support from the Chinese Scholarship Council(CSC)F.Guo also thanks for the support of Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN201801114)+2 种基金Scientific Research Foundation of Chongqing University of Technology(2017ZD35)L.Y.Jiang is sponsored by Chongqing Research Program of Basic Research and Frontier Technology(No.cstc2018jcyjAX0107)China Postdoctoral Science Foundation(2018M643407).
文摘The contribution of recrystallization and grain growth to the texture evolution in AZ31 alloy and a modified version AZ31+0.5 wt.%Ca was investigated utilizing a multi-step annealing process.The results showed that the addition of Ca triggered a considerable texture modification by increasing the texture spread and decreasing the overall texture intensity.This effect was found to be temperature dependent.When the annealing temperature remained lower than 450℃,a weak double peak texture with large basal pole tilt towards the RD was formed.This is correlated to microstructure observations of a large number of Ca-containing nano-sized particles that seemed to suppress grain growth below 450℃,which stabilized the weak recrystallization texture.This favorable texture was lost upon annealing at higher temperatures.In AZ31,recrystallization nuclei were found to preserve the orientation of their deformed parents,which offered limited potential to optimize the texture via annealing treatments.Grain growth of recrystallized grains resulted in a distinct sheet texture transition from a double-peak to a single-peak basal texture.Aspects of grain boundary energy and grain topology are discussed to explain the growth advantage of the sharp basal component over other orientations.
基金financially supported by the National Natural Science Foundation of China (Grant No. 51871038)the Chongqing Key Project of Technology Innovation and Application Development (Grant No. cstc2019jscx-mbdx X0025)the support from the University Innovation Research Group of Chongqing (Grant No. CXQT20023)。
文摘Preheating is the first step for thermal-mechanical processing of the materials. Several preheating schedules were designed based on industrial manufacturing to explore their effect on the microstructure and mechanical properties of AA2099 Al-Li alloy during the following hot rolling. The results show that the mechanical properties of as-rolled sheets are quite sensitive to preheating. Various types of secondary phases, including δ', T1 and T2 phases, were precipitated during the heating process. The difference among precipitates is the main reason to induce the variation of mechanical properties for as-rolled sheets. A rapid heating rate gave rise to the precipitation of δ' phase, which largely promoted yield stress and ultimate tensile strength in as-rolled sheets. T1 phase was more favorable in the preheating with a holding period at 150–250 °C, which caused a moderated strain hardening behavior. Precipitates formed during preheating induced different slip behaviors in the following deformation. The coexistence of T1 and δ' phase could restrict planar slip, which inhibited the formation of the shear band. The difference in the activity of non-octahedral slips and planar slips determined the strain hardening effect, which should be the reason for the variation of mechanical properties of as-rolled sheets.