期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Features of the Three Dimensional Structures in the Pacific Sub-surface Layer in Summer
1
作者 luyuan chen Rong cheng +2 位作者 Feimin Zhang Kai Yang chenghai Wang 《Journal of Atmospheric Science Research》 2020年第2期1-10,共10页
The anomaly of the summer sea temperature is analyzed by a spatial-temporal synthetically rotated Empirical Orthogonal Function(REOF)at three different depths(0 m,40 m,and 120 m)over the area 110°E^100°W and... The anomaly of the summer sea temperature is analyzed by a spatial-temporal synthetically rotated Empirical Orthogonal Function(REOF)at three different depths(0 m,40 m,and 120 m)over the area 110°E^100°W and 30°S^60°N.The spatial-temporal distribution shows that the“signal”of annual anomaly is stronger in the sub-surface layer than the surface layer,and it is stronger in the eastern equatorial Pacific than in the western area.The spatial structure of the sea temperature anomaly at different layers is related to both the ocean current and the interaction of ocean and atmosphere.The temporal changing trend of the sub-surface sea temperature in different areas shows that the annual mean sea temperature increases and the annual variability evidently increases since the 1980s,and these keep the same trend with the increasing El Nino phenomenon very well. 展开更多
关键词 Pacific sea temperature Spatial structure Temporal evolution
下载PDF
In situ Injectable Tetra-PEG Hydrogel Bioadhesive for Sutureless Repair of Gastrointestinal Perforation
2
作者 Shurong Li Yiwen Xian +5 位作者 Gang He luyuan chen Zhihui chen Yonglong Hong Chong Zhang Decheng Wu 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第23期3339-3348,共10页
Hydrogel bioadhesives represent promising and efficient alternatives to sutures or staples for gastrointestinal(GI)perforation management.However,several concerns remain for the existing bioadhesives including slow an... Hydrogel bioadhesives represent promising and efficient alternatives to sutures or staples for gastrointestinal(GI)perforation management.However,several concerns remain for the existing bioadhesives including slow and/or weak adhesive,poor mechanical strength,low biocompatibility,and poor biodegradability,which largely limit their clinical application in GI perforation repair.In this work,we introduce an in situ injectable Tetra-PEG hydrogel bioadhesive(SS)composed of tetra-armed poly(ethylene glycol)amine(Tetra-PEG-NH2)and tetra-armed poly(ethylene glycol)succinimidyl succinate(Tetra-PEG-SS)for the sutureless repair of GI defects.The SS hydrogel exhibits rapid gelation behavior and high burst pressure and is capable of providing instant robust adhesion and fluid-tight sealing in the ex vivo porcine intestinal and gastric models.Importantly,the succinyl ester linkers in the SS hydrogel endow the bioadhesive with suitable in vivo degradability to match the new GI tissue formation.The in vivo evaluation in the rat GI injured model further demonstrates the successful sutureless sealing and repair of the intestine and stomach by the SS hydrogel with the advantages of neglectable postsurgical adhesion,suppressed inflammation,and enhanced angiogenesis.Together,our results support potential clinical applications of the SS bioadhesive for the high-efficient repair of GI perforation. 展开更多
关键词 Gastrointestinal perforation Bioadhesives GELS Biological activity Sutureless repair Regenerative wound healing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部