In this work,we report the reorientation of magnetization by spin-orbit torque(SOT)in YIG/Pt bilayers.The SOT is investigated by measuring the spin Hall magnetoresistance(SMR),which is highly sensitive to the directio...In this work,we report the reorientation of magnetization by spin-orbit torque(SOT)in YIG/Pt bilayers.The SOT is investigated by measuring the spin Hall magnetoresistance(SMR),which is highly sensitive to the direction of magnetic moment of YIG.An external in-plane rotating magnetic field which is applied to the YIG/Pt bilayers,and the evolutions of SMR under different injected currents in the Pt layer,result in deviation of SMR curve from the standard shape.We conclude that the SOT caused by spin accumulation near the interface between YIG and Pt can effectively reorient the inplane magnetic moment of YIG.This discovery provides an effective way to modulate YIG magnetic moments by electrical methods.展开更多
基金Project supported by the Natural Science Foundation of Shaanxi Province,China(Grant No.2020JM-088)the National Natural Science Foundation of China(Grant Nos.51572222,51701158,and 51872241)the Fundamental Research Funds for the Central Universities,China(Grant Nos.3102017jc01001 and 310201911cx044).
文摘In this work,we report the reorientation of magnetization by spin-orbit torque(SOT)in YIG/Pt bilayers.The SOT is investigated by measuring the spin Hall magnetoresistance(SMR),which is highly sensitive to the direction of magnetic moment of YIG.An external in-plane rotating magnetic field which is applied to the YIG/Pt bilayers,and the evolutions of SMR under different injected currents in the Pt layer,result in deviation of SMR curve from the standard shape.We conclude that the SOT caused by spin accumulation near the interface between YIG and Pt can effectively reorient the inplane magnetic moment of YIG.This discovery provides an effective way to modulate YIG magnetic moments by electrical methods.