The fabrication of heterojunction catalysts is an effective strategy to enhance charge separation efficiency,thus boosting the performance of photocatalysts.This work presents the synthesis and investigation of a nove...The fabrication of heterojunction catalysts is an effective strategy to enhance charge separation efficiency,thus boosting the performance of photocatalysts.This work presents the synthesis and investigation of a novel KNbO_(3)/Bi_(4)O_(5)Br_(2) heterostructure catalyst for photocatalytic N_(2)-to-NH_(3) conversion under light illumination.While morphology analysis revealed KNbO_(3) microcubes embedded within Bi_(4)O_(5)Br_(2) nanosheets,the composite exhibited no significant improvement in specific surface area or optical property compared to Bi_(4)O_(5)Br_(2) due to the relatively wide band gap and low surface area of KNbO_(3).The main contribution lies in the enhanced separation efficiency of photogenerated electrons and holes.Besides,the band structure analysis suggests that KNbO_(3) and Bi_(4)O_(5)Br_(2) exhibit suitable band potentials to form a type II heterojunction.Benefiting from the higher Fermi level of KNbO_(3) than Bi_(4)O_(5)Br_(2),the electron drift at the contact region thus occurs and leads to the formation of a built-in electric field with the direction from KNbO_(3) to Bi_(4)O_(5)Br_(2),accelerating electron migration and improving the operational efficiency of the photocatalysts.Consequently,the KNbO_(3)/Bi_(4)O_(5)Br_(2) catalyst shows an increased photoactivity,achieving an NH_(3) generation rate 1.78 and 1.58 times those of KNbO_(3) and Bi_(4)O_(5)Br_(2),respectively.This work may offer valuable insights for the design and synthesis of heterojunction composite photocatalysts.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.22172144)the Key Research and Development Program of Zhejiang Province (Grant No.2023C03148).
文摘The fabrication of heterojunction catalysts is an effective strategy to enhance charge separation efficiency,thus boosting the performance of photocatalysts.This work presents the synthesis and investigation of a novel KNbO_(3)/Bi_(4)O_(5)Br_(2) heterostructure catalyst for photocatalytic N_(2)-to-NH_(3) conversion under light illumination.While morphology analysis revealed KNbO_(3) microcubes embedded within Bi_(4)O_(5)Br_(2) nanosheets,the composite exhibited no significant improvement in specific surface area or optical property compared to Bi_(4)O_(5)Br_(2) due to the relatively wide band gap and low surface area of KNbO_(3).The main contribution lies in the enhanced separation efficiency of photogenerated electrons and holes.Besides,the band structure analysis suggests that KNbO_(3) and Bi_(4)O_(5)Br_(2) exhibit suitable band potentials to form a type II heterojunction.Benefiting from the higher Fermi level of KNbO_(3) than Bi_(4)O_(5)Br_(2),the electron drift at the contact region thus occurs and leads to the formation of a built-in electric field with the direction from KNbO_(3) to Bi_(4)O_(5)Br_(2),accelerating electron migration and improving the operational efficiency of the photocatalysts.Consequently,the KNbO_(3)/Bi_(4)O_(5)Br_(2) catalyst shows an increased photoactivity,achieving an NH_(3) generation rate 1.78 and 1.58 times those of KNbO_(3) and Bi_(4)O_(5)Br_(2),respectively.This work may offer valuable insights for the design and synthesis of heterojunction composite photocatalysts.