期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Performance and mechanism of CO_(2) absorption during the simultaneous removal of SO_(2) and NO_(x) by wet scrubbing process
1
作者 Peng Lu Xianhui Yan +4 位作者 lyumeng ye Dingsheng Chen Dongyao Chen Jianhang Huang Chaoping Cen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期534-545,共12页
The co-removal of CO_(2)while removing SO_(2)and NOxfrom industrial flue gas has great potential of carbon emission reduction but related research is lacking.In this study,a wet scrubbing process with various urea sol... The co-removal of CO_(2)while removing SO_(2)and NOxfrom industrial flue gas has great potential of carbon emission reduction but related research is lacking.In this study,a wet scrubbing process with various urea solutions for desulfurization and denitrification was explored for the possibility of CO_(2)absorption.The results showed that the urea-additive solutions were efficient for NOxand SO_(2)abatement,but delivered<10%CO_(2)absorption efficiency.The addition of Ca(OH)_(2)dramatically enhanced the CO_(2)absorption,remained the desulfurization efficiency,unfortunately restricted the denitrification efficiency.Among various operating parameters,pH of solution played a determining role during the absorption.The contradictory pH demands of CO_(2)absorption and denitrification were observed and discussed in detail.A higher pH of solution than 10 was favorable for CO_(2)absorption,while the oxidizing of NO to NO_(2),NO_(2)^(-)or NO_(3)^(-)by NaClO_(2)was inhibited in this condition.When7<pH<10,it was favorable for the conversion and absorption of NO and NOx.However,the conversion of HCO_(3)^(-)to CO_(3)^(2-)was significantly inhibited,hence preventing the absorption of CO_(2).Large part of Ca(OH)_(2)became CaCO_(3)with a finer particle size,which covered the unreacted Ca(OH)_(2)surface after the reaction.Kinetic analysis showed that the CO_(2)absorption in urea-NaClO_(2)-Ca(OH)_(2)absorbent was controlled by chemical reaction in early stage,then by ash layer diffusion in later stage. 展开更多
关键词 CO_(2)absorption Synergistic desulfurization and denitrification Wet scrubbing process Urea-NaClO_(2)-Ca(OH)_(2)absorbent Carbonation reaction
原文传递
Wet and dry deposition fluxes of heavy metals in Pearl River Delta Region(China):Characteristics,ecological risk assessment,and source apportionment 被引量:21
2
作者 lyumeng ye Minjuan Huang +6 位作者 Buqing Zhong Xuemei Wang Qiulan Tu Haoran Sun Chao Wang Luolin Wu Ming Chang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第8期106-123,共18页
The atmospheric deposition of heavy metals poses serious risks to the ecological system and human health. To advance our knowledge of atmospheric dry/wet heavy metal deposition in the PRD region, monthly fluxes were e... The atmospheric deposition of heavy metals poses serious risks to the ecological system and human health. To advance our knowledge of atmospheric dry/wet heavy metal deposition in the PRD region, monthly fluxes were examined based on soluble/insoluble fractions of five heavy metal elements(Cu, Pb, Cd, Cr and Zn) in samples collected from January 2014 to December 2015 at Guangzhou(urban) and Dinghushan(suburban) sites. The ratios of wet/dry deposition fluxes indicated that heavy metal deposition was governed by wet deposition rather than dry deposition in the PRD region. Affected by the shifting of the Asian monsoon, wet deposition fluxes exhibited significant seasonal variation between summer monsoon seasons(April to September) and winter monsoon seasons(October to February) in this region. Cd was classified as an extremely strong potential ecological risk based on solubility and the Hakanson ecological risk index. Source contributions to wet deposition were calculated by PMF, suggesting that dust, biomass burning, industries,vehicles, long-range transport and marine aerosol sources in Guangzhou, and Zn fertilizers,marine aerosol sources, agriculture, incense burning, biomass burning, vehicles and the ceramics industry in Dinghushan, were the potential sources of heavy metals. 展开更多
关键词 Atmospheric dry/wet deposition Heavy metals Ecological risk assessment Sources apportionment The Pearl River Delta region
原文传递
Photochemical indicators of ozone sensitivity: application in the Pearl River Delta, China 被引量:9
3
作者 lyumeng ye Xuemei Wang +5 位作者 Shaofeng Fan Weihua Chen Ming Chang Shengzhen Zhou Zhiyong Wu Qi Fan 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第6期49-62,共14页
Surface 03 production has a highly nonlinear relationship with its precursors. The spatial and temporal heterogeneity of O3-NOx-VOC-sensitivity regimes complicates the control- decision making. In this paper, the indi... Surface 03 production has a highly nonlinear relationship with its precursors. The spatial and temporal heterogeneity of O3-NOx-VOC-sensitivity regimes complicates the control- decision making. In this paper, the indicator method was used to establish the relationship between 03 sensitivity and assessment indicators. Six popular ratios indicating ozone-precursor sensitivity, HCHO/NOy, H2O2/ HNO3, O3/NOy, O3/NOz, O3/HNO3, and H2O2/NOz, were evaluated based on the distribution of NOx- and VOC-sensitive regimes. WRF-Chem was used to study a serious ozone episode in fall over the Pearl River Delta (PRD). It was found that the south-west of the PRD is characterized by a VOCsensitive regime, while its north-east is NO y-sensitive, with a sharp transition area between the two regimes. All indicators produced good representations of the elevated ozone hours in the episode on 6 November 2009, with H202/HNO3 being the best indicator. The threshold sensitivity levels for HCHO/NOy, H2O2/HNO3, O3/NOy, O3/NOz, O3/HNO3, and H2O2/NOz were estimated to be 0.41, 0.55, 10.2, 14.0, 19.1, and 0.38, respectively. Threshold intervals for the indicators H2O2/HNO3, O3/ NOy, O3/NOz, O3/HNO3, and H202/NOz were able to identify more than 95% of VOC- and NOx-sensitive grids. The ozone episode on 16 November 16 2008 was used to independently verify the results, and it was found that only H2O2/HNO3 and H2O2/NOz were able to differentiate the ozone sensitivity regime well. Hence, these two ratios are suggested as the most appropriate indicators for identifying fall ozone sensitivity in the PRD. Since the species used for indicators have seasonal variation, the utility of those indicators for other seasons should be investigated in the future work. 展开更多
关键词 Ozone Pearl River Delta (PRD)Sensitivity regime Photochemical indicator Threshold levels
原文传递
Activity enhancement of acetate precursor prepared on MnO_(x)-CeO_(2) catalyst for low-temperature NH_(3)-SCR: Effect of gaseous acetone addition 被引量:1
4
作者 lyumeng ye Peng Lu +8 位作者 Dingsheng Chen Dongyao Chen Haiwen Wu Wenjing Dai Yanling Gan Jiayong Xiao Zongwei Xie Zengwang Li Haibao Huang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第8期2509-2512,共4页
MnO_(x)-CeO_(2) catalysts are developed by hydrolysis driving redox method using acetate precursor(3 Mn1 Ce-Ac) and nitrate precursor(3 Mn1 Ce-N) for the selective catalytic reduction(SCR) of NO_(x) by NH_(3).A counte... MnO_(x)-CeO_(2) catalysts are developed by hydrolysis driving redox method using acetate precursor(3 Mn1 Ce-Ac) and nitrate precursor(3 Mn1 Ce-N) for the selective catalytic reduction(SCR) of NO_(x) by NH_(3).A counterpart sample(Cop-3 Mn1 Ce) was prepared by the NH_(3)·H_(2) O co-precipitation method for comparison purpose.Combining the results of physicochemical properties characterization and performance test,we find that the 3 Mn1 Ce-Ac catalyst with some nanorod structures is highly active for the deNOx process.The SCR activity of the 3 Mn1 Ce-Ac catalyst is more admirable than the 3 Mn1 Ce-N and the Cop-3 Mn1 Ce catalysts due to plentiful Lewis acid sites,excellent low-temperature reducibility,and superior surface area resulted from O_(2) generation during the pre paration procedure.The 3 Mn1 Ce-Ac still exhibits the greatest performance for the deNO_(x )process when gaseous acetone is in the SCR feed gas.The NOx conversion and N2 selectivity over the 3 Mn1 Ce-Ac are both improved by gaseous acetone above150℃ due to the inhibition of SCR undesired side reactions(NSCR & C-O reactions) and "slow-SCR" process. 展开更多
关键词 MnO_(x)-CeO_(2)catalyst Hydrolysis driving redox method Low temperature NH_(3)-SCR Acetate precursor Effect of gaseous acetone
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部