期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
New ternary superconducting compound LaRu2As2: Physical properties from density functional theory calculations
1
作者 m a hadi m S ali +1 位作者 S H Naqib a K m a Islam 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期453-460,共8页
In this paper, we perform the density functional theory (DFT) -based calculations by the first-principles pseudopo- tential method to investigate the physical properties of the newly discovered superconductor LaRu2A... In this paper, we perform the density functional theory (DFT) -based calculations by the first-principles pseudopo- tential method to investigate the physical properties of the newly discovered superconductor LaRu2As2 for the first time. The optimized structural parameters are in good agreement with the experimental results. The calculated independent elas- tic constants ensure the mechanical stability of the compound. The calculated Cauchy pressure, Pugh's ratio as well as Poisson's ratio indicate that LaRu2As2 should behave as a ductile material. Due to low Debye temperature, LaRu2As2 may be used as a thermal barrier coating (TBC) material. The new compound should exhibit metallic nature as its valence bands overlap considerably with the conduction bands. LaRu2As2 is expected to be a soft material and easily machinable because of its low hardness value of 6.8 GPa. The multi-band nature is observed in the calculated Fermi surface. A highly anisotropic combination of ionic, covalent and metallic interactions is expected to be in accordance with charge density calculation. 展开更多
关键词 new superconductor LaRu2As2 density functional theory (DFT) calculations mechanical proper-ties electronic features
下载PDF
New ordered MAX phase Mo_2 TiAlC_2: Elastic and electronic properties from first-principles
2
作者 m a hadi m S ali 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第10期323-329,共7页
First-principles computation on the basis of density functional theory(DFT) is executed with the CASTEP code to explore the structural, elastic, and electronic properties along with Debye temperature and theoretical V... First-principles computation on the basis of density functional theory(DFT) is executed with the CASTEP code to explore the structural, elastic, and electronic properties along with Debye temperature and theoretical Vickers’ hardness of newly discovered ordered MAX phase carbide Mo2TiAlC2. The computed structural parameters are very reasonable compared with the experimental results. The mechanical stability is verified by using the computed elastic constants. The brittleness of the compound is indicated by both the Poisson’s and Pugh’s ratios. The new MAX phase is capable of resisting the pressure and tension and also has the clear directional bonding between atoms. The compound shows significant elastic anisotropy. The Debye temperature estimated from elastic moduli(B, G) is found to be 413.6 K. The electronic structure indicates that the bonding nature of Mo2TiAlC2is a mixture of covalent and metallic with few ionic characters. The electron charge density map shows a strong directional Mo–C–Mo covalent bonding associated with a relatively weak Ti–C bond.The calculated Fermi surface is due to the low-dispersive Mo 4d-like bands, which makes the compound a conductive one.The hardness of the compound is also evaluated and a high value of 9.01 GPa is an indication of its strong covalent bonding. 展开更多
关键词 new ordered MAX phase density functional theory calculations Debye temperature Vickers hardness
下载PDF
Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
3
作者 S K mitro R majumder +3 位作者 K m Hossain md Zahid Hasan md Emran Hossain m a hadi 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期398-406,共9页
We theoretically study the structural, elastic and optical properties of Er Pd Bi together with its anisotropic behaviors using density functional theory. It is observed that Er Pd Bi satisfies the Born stability crit... We theoretically study the structural, elastic and optical properties of Er Pd Bi together with its anisotropic behaviors using density functional theory. It is observed that Er Pd Bi satisfies the Born stability criteria nicely and possesses high quality of machinability. The anisotropic behavior of Er Pd Bi is reported with the help of theoretical anisotropy indices incorporating 3 D graphical presentation, which suggests that Er Pd Bi is highly anisotropic in nature. It is noticed that the minimum thermal conductivity is very low for Er Pd Bi compared to the several species. This low value of minimum thermal conductivity introduces the potentiality of Er Pd Bi in high-temperature applications such as thermal barrier coatings.In addition, deep optical insights of Er Pd Bi reveal that our material can be used in different optoelectronic and electronic device applications ranging from organic light-emitting diodes, solar panel efficiency, waveguides etc. to integration of integrated circuits. Therefore, we believe that our results will provide a new insight into high-temperature applications and will benefit for the development of promising optoelectric devices as well. 展开更多
关键词 Er Pd Bi minimum thermal conductivity ANISOTROPY density functional theory(DFT)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部