The electron capture processes in collisions of Li3+ion with Li(1s22s)and Li(1s22p0,1)are investigated by using the two-center atomic orbital close-coupling method in the energy range from 0.1 keV/u to 300 keV/u.The i...The electron capture processes in collisions of Li3+ion with Li(1s22s)and Li(1s22p0,1)are investigated by using the two-center atomic orbital close-coupling method in the energy range from 0.1 keV/u to 300 keV/u.The interaction of the active electrons with the target ion is represented by a model potential.The present results for the Li3+–Li(1s22s)system are compared with the available theoretical data and general agreement is obtained for the high collision energies.It is also found that the total and partial electron capture cross sections are sensitive to the initial charge cloud alignment in the low energy region.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402300)the National Natural Science Foundation of China(Grant No.11774037)+1 种基金International Atomic Energy Agency,China(Grant No.23196/R0)the Science Challenge Project of China(Grant No.TZ2016001)
文摘The electron capture processes in collisions of Li3+ion with Li(1s22s)and Li(1s22p0,1)are investigated by using the two-center atomic orbital close-coupling method in the energy range from 0.1 keV/u to 300 keV/u.The interaction of the active electrons with the target ion is represented by a model potential.The present results for the Li3+–Li(1s22s)system are compared with the available theoretical data and general agreement is obtained for the high collision energies.It is also found that the total and partial electron capture cross sections are sensitive to the initial charge cloud alignment in the low energy region.